Multimedia Systems

, Volume 20, Issue 2, pp 105–125 | Cite as

Privacy-aware peer-to-peer content distribution using automatically recombined fingerprints

Regular Paper

Abstract

Multicast distribution of content is not suited to content-based electronic commerce because all buyers obtain exactly the same copy of the content, in such a way that unlawful redistributors cannot be traced. Unicast distribution has the shortcoming of requiring one connection with each buyer, but it allows the merchant to embed a different serial number in the copy obtained by each buyer, which enables redistributor tracing. Peer-to-peer (P2P) distribution is a third option which may combine some of the advantages of multicast and unicast: on the one hand, the merchant only needs unicast connections with a few seed buyers, who take over the task of further spreading the content; on the other hand, if a proper fingerprinting mechanism is used, unlawful redistributors of the P2P-distributed content can still be traced. In this paper, we propose a novel fingerprinting mechanism for P2P content distribution which allows redistributor tracing, while preserving the privacy of most honest buyers and offering collusion resistance and buyer frameproofness.

Keywords

Peer-to-peer content distribution Anonymous fingerprinting Collusion-resistant fingerprinting Buyer frameproofness Recombination fingerprinting 

Notes

Acknowledgments

This work was partly funded by the European Commission under FP7 project “DwB”, by the Spanish Government through projects TSI200765406-C03-01/03 “E-AEGIS”, TIN2011-27076-C03-01/02 “CO-PRIVACY” and CONSOLIDER INGENIO 2010 CSD2007-0004 “ARES”, and by the Government of Catalonia through grant 2009 SGR 1135. The second author is partly supported as an ICREA-Acadèmia researcher by the Government of Catalonia; also, he holds the UNESCO Chair in Data Privacy, but the views expressed in this paper are his own and do not commit UNESCO.

References

  1. 1.
  2. 2.
    Bo, Y., Piyuan, L., Wenzheng Z.: An efficient anonymous fingerprinting protocol. In: Computational Intelligence and Security, LNCS, vol. 4456, pp. 824–832. Springer, Berlin (2007)Google Scholar
  3. 3.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. In: Advances in Cryptology-CRYPTO’95, LNCS, vol. 963, pp. 452–465. Springer, Berlin (1995)Google Scholar
  4. 4.
    Camenisch, J.: Efficient anonymous fingerprinting with group signatures. In: Asiacrypt 2000, LNCS, vol. 1976, pp. 415–428. Springer, Berlin (2000)Google Scholar
  5. 5.
    Chang, C.-C., Tsai, H.-C., Hsieh, Y.-P.: An efficient and fair buyer-seller fingerprinting scheme for large scale networks. Comput. Secur. 29(2), 269–277 (2010)CrossRefGoogle Scholar
  6. 6.
    Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981)CrossRefGoogle Scholar
  7. 7.
    Chaum, D.: Untraceable electronic cash. In: Advances in Cryptology-CRYPTO’88, LNCS, vol. 403, pp. 319–327. Springer, Berlin (1990)Google Scholar
  8. 8.
    Chaum, D., Damgård, I., van de Graaf, J.: Multiparty computations ensuring privacy of each party’s input and correctness of the result. In: Advances in Cryptology-CRYPTO’87, LNCS, vol. 293, pp. 87–119. Springer, Berlin (1988)Google Scholar
  9. 9.
    Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography. Morgan Kaufmann, Burlington (2008)Google Scholar
  10. 10.
    Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: EUROCRYPT 2010, LNCS, vol. 6110, pp. 445–465. Springer, Berlin (2010)Google Scholar
  11. 11.
    Domingo-Ferrer, J.: Anonymous fingerprinting of electronic information with automatic identification of redistributors. Electr. Lett. 34(13), 1303–1304 (1998)CrossRefGoogle Scholar
  12. 12.
    Domingo-Ferrer, J.: Anonymous fingerprinting based on committed oblivious transfer. In: Public Key Cryptography-PKC 1999, LNCS, vol. 1560, pp. 43–52. Springer, Berlin (1999)Google Scholar
  13. 13.
    Domingo-Ferrer, J.: Coprivacy: towards a theory of sustainable privacy. In: Privacy in Statistical Databases-PSD 2010, LNCS, vol. 6344, pp. 258–268. Springer, Berlin (2010)Google Scholar
  14. 14.
    Domingo-Ferrer, J.: Coprivacy: an introduction to the theory and applications of co-operative privacy. SORT-Statistics and Operations Research Transactions, 35(special issue: Privacy in statistical databases):25–40 (2011)Google Scholar
  15. 15.
    Domingo-Ferrer, J., Herrera-Joancomartí, J.: Short collusion-secure fingerprints based on dual binary Hamming codes. Electron. Lett. 36(20), 1697–1699 (2000)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Fallahpour, M., Megías, D.: High capacity audio watermarking using the high frequency band of the wavelet domain. Multimedia Tools Appl. 52(2), 485–498 (2011)CrossRefGoogle Scholar
  18. 18.
    Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)MATHGoogle Scholar
  19. 19.
    Maymounkov, P., Mazières. D.: Kademlia: a peer-to-peer information system based on the XOR metric. In: PTPS 2002-First International Workshop on Peer-to-Peer Systems, LNCS, vol. 2429, pp. 43–65. Springer, Berlin (2002)Google Scholar
  20. 20.
    Katzenbeisser, S., Lemma, A., Celik, M., van der Veen, M., Maas, M.: A buyer-seller watermarking protocol based on secure embedding. IEEE Trans. Inf. Forens. Secur. 3(4), 783–786 (2008)CrossRefGoogle Scholar
  21. 21.
    Kuribayashi, M.: On the implementation of spread spectrum fingerprinting in asymmetric cryptographic protocol. EURASIP J. Inf. Secur. 2010, 1:1–1:11 (2010)Google Scholar
  22. 22.
    Lei, C.-L., Yu, P.-L., Tsai, P.-L., Chan, M.-H.: An efficient and anonymous buyer-seller watermarking protocol. IEEE Trans. Image Process. 13(12), 1618–1626 (2004)CrossRefGoogle Scholar
  23. 23.
    Megías, D., Serra-Ruiz, J., Fallahpour, M.: Efficient self-synchronised blind audio watermarking system based on time domain and FFT amplitude modification. Signal Process. 90(12), 3078–3092 (2010)CrossRefMATHGoogle Scholar
  24. 24.
    Memon, N., Wong, P.W.: A buyer-seller watermarking protocol. IEEE Trans. Image Process 10(4), 643–649 (2001)CrossRefMATHGoogle Scholar
  25. 25.
    Nuida, K., Fujitsu, S., Hagiwara, M., Kitagawa, T., Watanabe, H., Ogawa, K., Imai, H.: An improvement of Tardos’s collusion-secure fingerprinting codes with very short lengths. In: Proceedings of the 17th International Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC’07), pp. 80–89. Springer, Berlin (2007)Google Scholar
  26. 26.
  27. 27.
    Pfitzmann, B., Waidner, M.: Anonymous fingerprinting. In: Advances in Cryptology-EUROCRYPT’96, LNCS, vol. 1233, pp. 88–102. Springer, Berlin (1997)Google Scholar
  28. 28.
    Pfitzmann, B., Sadeghi, A.-R.: Coin-based anonymous fingerprinting. In: Advances in Cryptology-EUROCRYPT’99, LNCS, vol. 1592, pp. 150–164. Springer, Berlin (1999)Google Scholar
  29. 29.
    Prins, J.P., Erkin, Z., Lagendijk, R.L.: Anonymous fingerprinting with robust QIM watermarking techniques. EURASIP J. Inf. Secur., 2007, 20:1–20:7 (2007)Google Scholar
  30. 30.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing (STOC ’03), pp. 116–125. ACM, New York (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Estudis d’Informàtica, Multimèdia i TelecomunicacióUniversitat Oberta de Catalunya, Internet Interdisciplinary Institute (IN3)BarcelonaSpain
  2. 2.Department of Computer Engineering and MathematicsUniversitat Rovira i Virgili, UNESCO Chair in Data PrivacyTarragonaSpain

Personalised recommendations