Multimedia Systems

, Volume 20, Issue 2, pp 105–125 | Cite as

Privacy-aware peer-to-peer content distribution using automatically recombined fingerprints

Regular Paper


Multicast distribution of content is not suited to content-based electronic commerce because all buyers obtain exactly the same copy of the content, in such a way that unlawful redistributors cannot be traced. Unicast distribution has the shortcoming of requiring one connection with each buyer, but it allows the merchant to embed a different serial number in the copy obtained by each buyer, which enables redistributor tracing. Peer-to-peer (P2P) distribution is a third option which may combine some of the advantages of multicast and unicast: on the one hand, the merchant only needs unicast connections with a few seed buyers, who take over the task of further spreading the content; on the other hand, if a proper fingerprinting mechanism is used, unlawful redistributors of the P2P-distributed content can still be traced. In this paper, we propose a novel fingerprinting mechanism for P2P content distribution which allows redistributor tracing, while preserving the privacy of most honest buyers and offering collusion resistance and buyer frameproofness.


Peer-to-peer content distribution Anonymous fingerprinting Collusion-resistant fingerprinting Buyer frameproofness Recombination fingerprinting 


  1. 1.
  2. 2.
    Bo, Y., Piyuan, L., Wenzheng Z.: An efficient anonymous fingerprinting protocol. In: Computational Intelligence and Security, LNCS, vol. 4456, pp. 824–832. Springer, Berlin (2007)Google Scholar
  3. 3.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. In: Advances in Cryptology-CRYPTO’95, LNCS, vol. 963, pp. 452–465. Springer, Berlin (1995)Google Scholar
  4. 4.
    Camenisch, J.: Efficient anonymous fingerprinting with group signatures. In: Asiacrypt 2000, LNCS, vol. 1976, pp. 415–428. Springer, Berlin (2000)Google Scholar
  5. 5.
    Chang, C.-C., Tsai, H.-C., Hsieh, Y.-P.: An efficient and fair buyer-seller fingerprinting scheme for large scale networks. Comput. Secur. 29(2), 269–277 (2010)CrossRefGoogle Scholar
  6. 6.
    Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981)CrossRefGoogle Scholar
  7. 7.
    Chaum, D.: Untraceable electronic cash. In: Advances in Cryptology-CRYPTO’88, LNCS, vol. 403, pp. 319–327. Springer, Berlin (1990)Google Scholar
  8. 8.
    Chaum, D., Damgård, I., van de Graaf, J.: Multiparty computations ensuring privacy of each party’s input and correctness of the result. In: Advances in Cryptology-CRYPTO’87, LNCS, vol. 293, pp. 87–119. Springer, Berlin (1988)Google Scholar
  9. 9.
    Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography. Morgan Kaufmann, Burlington (2008)Google Scholar
  10. 10.
    Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: EUROCRYPT 2010, LNCS, vol. 6110, pp. 445–465. Springer, Berlin (2010)Google Scholar
  11. 11.
    Domingo-Ferrer, J.: Anonymous fingerprinting of electronic information with automatic identification of redistributors. Electr. Lett. 34(13), 1303–1304 (1998)CrossRefGoogle Scholar
  12. 12.
    Domingo-Ferrer, J.: Anonymous fingerprinting based on committed oblivious transfer. In: Public Key Cryptography-PKC 1999, LNCS, vol. 1560, pp. 43–52. Springer, Berlin (1999)Google Scholar
  13. 13.
    Domingo-Ferrer, J.: Coprivacy: towards a theory of sustainable privacy. In: Privacy in Statistical Databases-PSD 2010, LNCS, vol. 6344, pp. 258–268. Springer, Berlin (2010)Google Scholar
  14. 14.
    Domingo-Ferrer, J.: Coprivacy: an introduction to the theory and applications of co-operative privacy. SORT-Statistics and Operations Research Transactions, 35(special issue: Privacy in statistical databases):25–40 (2011)Google Scholar
  15. 15.
    Domingo-Ferrer, J., Herrera-Joancomartí, J.: Short collusion-secure fingerprints based on dual binary Hamming codes. Electron. Lett. 36(20), 1697–1699 (2000)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Fallahpour, M., Megías, D.: High capacity audio watermarking using the high frequency band of the wavelet domain. Multimedia Tools Appl. 52(2), 485–498 (2011)CrossRefGoogle Scholar
  18. 18.
    Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)MATHGoogle Scholar
  19. 19.
    Maymounkov, P., Mazières. D.: Kademlia: a peer-to-peer information system based on the XOR metric. In: PTPS 2002-First International Workshop on Peer-to-Peer Systems, LNCS, vol. 2429, pp. 43–65. Springer, Berlin (2002)Google Scholar
  20. 20.
    Katzenbeisser, S., Lemma, A., Celik, M., van der Veen, M., Maas, M.: A buyer-seller watermarking protocol based on secure embedding. IEEE Trans. Inf. Forens. Secur. 3(4), 783–786 (2008)CrossRefGoogle Scholar
  21. 21.
    Kuribayashi, M.: On the implementation of spread spectrum fingerprinting in asymmetric cryptographic protocol. EURASIP J. Inf. Secur. 2010, 1:1–1:11 (2010)Google Scholar
  22. 22.
    Lei, C.-L., Yu, P.-L., Tsai, P.-L., Chan, M.-H.: An efficient and anonymous buyer-seller watermarking protocol. IEEE Trans. Image Process. 13(12), 1618–1626 (2004)CrossRefGoogle Scholar
  23. 23.
    Megías, D., Serra-Ruiz, J., Fallahpour, M.: Efficient self-synchronised blind audio watermarking system based on time domain and FFT amplitude modification. Signal Process. 90(12), 3078–3092 (2010)CrossRefMATHGoogle Scholar
  24. 24.
    Memon, N., Wong, P.W.: A buyer-seller watermarking protocol. IEEE Trans. Image Process 10(4), 643–649 (2001)CrossRefMATHGoogle Scholar
  25. 25.
    Nuida, K., Fujitsu, S., Hagiwara, M., Kitagawa, T., Watanabe, H., Ogawa, K., Imai, H.: An improvement of Tardos’s collusion-secure fingerprinting codes with very short lengths. In: Proceedings of the 17th International Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC’07), pp. 80–89. Springer, Berlin (2007)Google Scholar
  26. 26.
  27. 27.
    Pfitzmann, B., Waidner, M.: Anonymous fingerprinting. In: Advances in Cryptology-EUROCRYPT’96, LNCS, vol. 1233, pp. 88–102. Springer, Berlin (1997)Google Scholar
  28. 28.
    Pfitzmann, B., Sadeghi, A.-R.: Coin-based anonymous fingerprinting. In: Advances in Cryptology-EUROCRYPT’99, LNCS, vol. 1592, pp. 150–164. Springer, Berlin (1999)Google Scholar
  29. 29.
    Prins, J.P., Erkin, Z., Lagendijk, R.L.: Anonymous fingerprinting with robust QIM watermarking techniques. EURASIP J. Inf. Secur., 2007, 20:1–20:7 (2007)Google Scholar
  30. 30.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing (STOC ’03), pp. 116–125. ACM, New York (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Estudis d’Informàtica, Multimèdia i TelecomunicacióUniversitat Oberta de Catalunya, Internet Interdisciplinary Institute (IN3)BarcelonaSpain
  2. 2.Department of Computer Engineering and MathematicsUniversitat Rovira i Virgili, UNESCO Chair in Data PrivacyTarragonaSpain

Personalised recommendations