Advertisement

Multimedia Systems

, Volume 19, Issue 2, pp 79–93 | Cite as

Allocation algorithms for personal TV advertisements

  • Ron Adany
  • Sarit Kraus
  • Fernando Ordonez
Regular Paper

Abstract

In this paper we consider the problem of allocating personal TV advertisements to viewers. The problem’s input consists of ad requests and viewers. Each ad is associated with a length, a payment, a requested number of viewers, a requested number of allocations per viewer and a target population profile. Each viewer is associated with a profile and an estimated viewing capacity which is uncertain. The goal is to maximize the revenue obtained from the allocation of ads to viewers for multiple periods while satisfying the ad constraints. First, we present the integer programming (IP) models of the problem and several heuristics for the deterministic version of the problem where the viewers’ viewing capacities are known in advance. We compare the performances of the proposed algorithms to those of the state-of-the-art IP solver. Later, we discuss the multi-period uncertain problem and, based on the best heuristic for the deterministic version, present heuristics for low and high uncertainty. Through computational experiments, we evaluate our heuristics. For the deterministic version, our best heuristic attains 98 % of the possible revenue and for the multi-period uncertain version our heuristics performances are very high, even in cases of high uncertainty, compared to the revenue obtained by the deterministic version.

Keywords

TV advertisements Personalization Allocation Heuristics Uncertainty 

References

  1. 1.
    BARB: Barb reports: Monthly total viewing summary. http://www.barb.co.uk (2010)
  2. 2.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Operat. Res. Lett. 25(1), 1–14 (1999)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Programm. 88(3), 411–424 (2000)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Birge, J., Louveaux, F.: Introduction to stochastic programming. Springer, Berlin (1997)MATHGoogle Scholar
  5. 5.
    Bollapragada, S., Garbiras, M.: Scheduling commercials on broadcast television. Operat. Res. 52(3), 337–345 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Bozios, T., Lekakos, G., Skoularidou, V., Chorianopoulos, K.: Advanced techniques for personalized advertising in a digital TV environment: the iMEDIA system. In: Proceedings of the eBusiness and eWork conference. Venice, pp. 1025–1031 (2001)Google Scholar
  7. 7.
    Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. In: Proceedings of the eleventh annual ACM-SIAM symposium on discrete algorithms, pp. 213–222. Society for Industrial and Applied Mathematics, Philadelphia (2000)Google Scholar
  8. 8.
    Chorianopoulos, K.: Personalized and mobile digital TV applications. Multimed. Tools Appl. 36(1), 1–10 (2008)CrossRefGoogle Scholar
  9. 9.
    Dawande, M., Kalagnanam, J., Keskinocak, P., Salman, F., Ravi, R.: Approximation algorithms for the multiple knapsack problem with assignment restrictions. J. Comb. Optim. 4(2), 171–186 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Dureau, V.: Addressable advertising on digital television. In: Proceedings of the 2nd European conference on interactive television: enhancing the experience, Brighton, UK (2004)Google Scholar
  11. 11.
    Fleming, P.J., Pashkevich, M.A.: Optimal advertising campaign generation for multiple brands using MOGA. IEEE Trans. Syst. Man Cybernet. 37(6), 1190–1201 (2007)CrossRefGoogle Scholar
  12. 12.
    Gilbert, D.: The American class structure in an age of growing inequality. Wadsworth Publishing, Belmont (2002)Google Scholar
  13. 13.
    Google AdWards: http://adwords.google.com (2011)
  14. 14.
    Juniper Research: Annual mobile adspend to pass $1 billion in 2008, with mobile TV to drive revenues to almost $7.6 billion by 2013. http://juniperresearch.com (2008)
  15. 15.
    Kastidou, G., Cohen, R.: An approach for delivering personalized ads in interactive TV customized to both users and advertisers. In: Proceedings of European conference on interactive television (2006)Google Scholar
  16. 16.
    Kim, E.M., Wildman, S.S.: A deeper look at the economics of advertiser support for television: the implications of consumption-differentiated viewers and ad addressability. J. Media Econ. 19, 55–79 (2006)CrossRefGoogle Scholar
  17. 17.
    Kundakcioglu, O.E., Alizamir, S.: Generalized assignment problem. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 1153–1162. Springer, Berlin (2009)CrossRefGoogle Scholar
  18. 18.
    Lekakos, G., Giaglis, G.: A lifestyle-based approach for delivering personalized advertisements in digital interactive television. J. Comput. Mediat. Commun. 9(2) (2004)Google Scholar
  19. 19.
    Lin, X., Janak, S., Floudas, C.: A new robust optimization approach for scheduling under uncertainty: I. bounded uncertainty. Comput. Chem. Eng. 28(6–7), 1069–1085 (2004)CrossRefGoogle Scholar
  20. 20.
    López-Nores, M., Pazos-Arias, J., García-Duque, J., Blanco-Fernández, Y., Martín-Vicente, M., Fernández-Vilas, A., Ramos-Cabrer, M., Gil-Solla, A.: MiSPOT: dynamic product placement for digital TV through MPEG-4 processing and semantic reasoning. Knowl. Inform. Syst. 22(1), 101–128 (2010)CrossRefGoogle Scholar
  21. 21.
    Negev consortium: http://www.negev-initiative.org (2011)
  22. 22.
    Nielsen Media Research: Advertising fact sheet. http://blog.nielsen.com (2010)
  23. 23.
    Nielsen Media Research: Snapshot of television use in the U.S. http://blog.nielsen.com (2010)
  24. 24.
    Nielsen Media Research: Three Screen Report, Q1 2010, vol. 8, http://blog.nielsen.com (2010)
  25. 25.
    NSR: Latest NSR Report Finds Mobile TV and Video Growth to be Driven by Broadcasters and Consumers. http://nsr.com (2008)
  26. 26.
    Nutov, Z., Beniaminy, I., Yuster, R.: A (1-1/e)-approximation algorithm for the generalized assignment problem. Operat. Res. Lett. 34(3), 283–288 (2006)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Oksman, V., Ollikainen, V., Noppari, E., Herrero, C., Tammela, A.: Podracing: experimenting with mobile TV content consumption and delivery methods. Multimed. Syst. 14(2), 105–114 (2008)CrossRefGoogle Scholar
  28. 28.
    Park, J., Lim, B., Lee, Y.: A Lagrangian dual-based branch-and-bound algorithm for the generalized multi-assignment problem. Manag. Sci. 44, 271–282 (1998)CrossRefGoogle Scholar
  29. 29.
    Paulson, L.: TV comes to the mobile phone. IEEE Comput. 39(4), 13–16 (2006)CrossRefGoogle Scholar
  30. 30.
    Pramataris, K., Papakyriakopoulos, D., Lekakos, G., Mulonopoulos, N.: Personalized Interactive TV Advertising: The iMEDIA Business Model. Electron. Mark. 11, 1–9 (2001)CrossRefGoogle Scholar
  31. 31.
    Shmoys, D., Tardos, É.: An approximation algorithm for the generalized assignment problem. Math. Program. 62(1), 461–474 (1993)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    SintecMedia: http://sintecmedia.com (2011)
  33. 33.
    Toktas, B., Yen, J., Zabinsky, Z.: Addressing capacity uncertainty in resource-constrained assignment problems. Comput. Operat. Res. 33, 724–745 (2006)MATHCrossRefGoogle Scholar
  34. 34.
    Velusamy, S., Gopal, L., Bhatnagar, S., Varadarajan, S.: An efficient ad recommendation system for TV programs. Multimed. Syst. 14(2), 73–87 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Computer Science DepartmentBar-Ilan UniversityRamat-GanIsrael
  2. 2.Industrial EngineeringUniversity of ChileSantiagoChile

Personalised recommendations