Multimedia Systems

, Volume 19, Issue 2, pp 95–102 | Cite as

Frequency-based similarity measure for multimedia recommender systems

  • Zia ur Rehman
  • Farookh K. Hussain
  • Omar K. Hussain
Regular Paper

Abstract

Personalized recommendation has become a pivotal aspect of online marketing and e-commerce as a means of overcoming the information overload problem. There are several recommendation techniques but collaborative recommendation is the most effective and widely used technique. It relies on either item-based or user-based nearest neighborhood algorithms which utilize some kind of similarity measure to assess the similarity between different users or items for generating the recommendations. In this paper, we present a new similarity measure which is based on rating frequency and compare its performance with the current most commonly used similarity measures. The applicability and use of this similarity measure from the perspective of multimedia content recommendation is presented and discussed.

Keywords

Personalization Recommender systems Collaborative filtering Similarity measures Multimedia content 

Notes

Acknowledgments

This research is supported by Curtin University under the Curtin International Postgraduate Research Scholarship (CIPRS) Program.

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005). doi: 10.1109/TKDE.2005.99 CrossRefGoogle Scholar
  2. 2.
    Ahn, H.J.: A hybrid collaborative filtering recommender system using a new similarity measure. In: Proceedings of the 6th WSEAS International Conference on Applied Computer Science, vol. 6 (2007)Google Scholar
  3. 3.
    Anand, D., Bharadwaj, K.: Adaptive user similarity measures for recommender systems: a genetic programming approach. In: 2010 3rd International Conference on Computer Science and Information Technology, pp. 121–125. IEEE (2010). doi: 10.1109/ICCSIT.2010.5563737
  4. 4.
    Anand, D., Bharadwaj, K.K.: Utilizing various sparsity measures for enhancing accuracy of collaborative recommender systems based on local and global similarities. Expert Syst. Appl. 38(5), 5101–5109 (2011). doi: 10.1016/j.eswa.2010.09.141 CrossRefGoogle Scholar
  5. 5.
    Bartolini, I., Zhang, Z., Papadias, D.: Collaborative filtering with personalized skylines. IEEE Trans. Knowl. Data Eng. 23(2), 190–203 (2010). doi: 10.1109/TKDE.2010.86 CrossRefGoogle Scholar
  6. 6.
    Candillier, L., Jack, K., Fessant, F., Meyer, F.: State-of-the-art recommender systems. In: Chevalier, M., Julien, C., Soule-Dupuy, C. (eds) Collaborative and Social Information Retrieval and Access-Techniques for Improved User Modeling, chap. 1, pp. 1–22. IGI Global, Hershey (2009)CrossRefGoogle Scholar
  7. 7.
    Cremonesi, P., Turrin, R.: Analysis of cold-start recommendations in IPTV systems. In: Proceedings of the third ACM conference on Recommender systems—RecSys ’09, p. 233. ACM Press, New York, New York, USA (2009). doi: 10.1145/1639714.1639756
  8. 8.
    Davidson, J., Liebald, B., Liu, J., Nandy, P.: The YouTube video recommendation system. In: RecSys, pp. 293–296 (2010)Google Scholar
  9. 9.
    Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommender systems. In: Recommender Systems Handbook, pp. 107–144. Springer (2011)Google Scholar
  10. 10.
    Ducheneaut, N., Partridge, K., Huang, Q., Price, B., Roberts, M., Chi, E., Bellotti, V., Begole, B.: Collaborative filtering is not enough? Experiments with a mixed-model recommender for leisure activities. User Model. Adapt. Pers. 5535, 295–306 (2009). doi: 10.1007/978-3-642-02247-0 CrossRefGoogle Scholar
  11. 11.
    Fleder, D.M., Hosanagar, K.: Recommender systems and their impact on sales diversity. In: Proceedings of the 8th ACM conference on Electronic commerce EC 07, EC ’07, pp. 192–199. ACM Press (2007). doi: 10.1145/1250910.1250939
  12. 12.
    Gedikli, F.: Recommending based on rating frequencies. RecSys2010 (2010)Google Scholar
  13. 13.
    Jannach, D., Zanker, M., Felfernig, A.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  14. 14.
    Kumar, A.: Collaborative web recommendation systems—a survey approach. Global J. Comput. Sci. Technol. 9(5), 30–35 (2010)Google Scholar
  15. 15.
    Kwon, H., Lee, T., Hong, K.: Improved memory-based Collaborative filtering using entropy-based similarity measures. In: Proceedings of the 2009 International Symposium on Web Information Systems and Applications (WISA09), pp. 29–34 (2009)Google Scholar
  16. 16.
    Lathia, N., Hailes, S., Capra, L.: The effect of correlation coefficients on communities of recommenders. In: Proceedings of the 2008 ACM symposium on Applied computing, pp. 2000–2005. ACM, Fortaleza, Ceara, Brazil (2008)Google Scholar
  17. 17.
    Lee, T., Park, Y., Park, Y.T.: A Similarity Measure for Collaborative Filtering with Implicit Feedback. In: Advanced Intelligent Computing Theories and Applications With Aspects of Artificial Intelligence, pp. 385–397. Springer (2007). doi: 10.1007/978-3-540-74205-0_43
  18. 18.
    Liu, J.G., Z.Chen, Q.M., Chen, J., Deng, F., Zhang, H.T., Zhang, Z.K., Zhou, T.: Recent advacnes in personal recommender systems. Int. J. Inf. Systems Sci. 5(2), 230–247 (2009)MATHGoogle Scholar
  19. 19.
    Miller, B.N.: Toward a personal recommender system. ACM Trans. Inf. Systems 22(3), 258 (2004)Google Scholar
  20. 20.
    Prem Melville, V.S.: Recommender Systems (2010). doi: 10.1162/153244302760200641
  21. 21.
    Rafter, R., OMahony, M., Hurley, N., Smyth, B.: What have the neighbours ever done for us? A collaborative filtering perspective. In: User Modeling, Adaptation, and Personalization, vol. 1, pp. 355–360. Springer-Verlag (2009)Google Scholar
  22. 22.
    Resnick, P., Varian, H.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  23. 23.
    Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009(Section 3), 1–19 (2009). doi: 10.1155/2009/421425
  24. 24.
    Yahoo: Yahoo! Movies User Ratings and Descriptive Content Information, v.1.0Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Zia ur Rehman
    • 1
    • 2
  • Farookh K. Hussain
    • 3
  • Omar K. Hussain
    • 1
  1. 1.School of Information SystemsCurtin UniversityPerthAustralia
  2. 2.GPOPerthAustralia
  3. 3.School of Software, Faculty of Engineering and Information TechnologyUniversity of TechnologySydneyAustralia

Personalised recommendations