Multimedia Systems

, Volume 18, Issue 4, pp 283–293 | Cite as

CBIR with a subspace tree: principal component analysis versus averaging

  • Andreas WichertEmail author
  • André Filipe da  Silva Veríssimo
Regular Paper


The subspace tree is an indexing method for large multi-media databases. The search in such a tree starts at the subspace with the lowest dimension. In this subspace, the set of all possible similar images is determined. In the next subspace, additional metric information corresponding to a higher dimension is used to reduce this set. We compare theoretically and empirically data-dependent mappings into subspaces (principal component analysis) with data-independent mapping (averaging). The empirical experiments are performed on an image collection of 30,000 images.


CBIR High-dimensional indexing Image Pyramid PCA Subspace tree 



This work was supported by Fundao para a Cencia e Tecnologia (FCT) (INESC-ID multiannual funding) through the PIDDAC Program funds.


  1. 1.
    Andoni, A., Dater, M., Indyk, P., Immorlica, N., Mirrokni, V.: Locality-sensitive hashing using stable distributions. In: Darrell, T., Indyk, P., Shakhnarovich, G. (eds.) Nearest Neighbor Methods in Learning and Vision: Theory and Practice, chap. 4, MIT-Press, Cambridge (2006)Google Scholar
  2. 2.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modeling. In: Baeza-Yates, R., Ribeiro-Neto, B. (eds.) Modern Information Retrieval. chap. 2, pp. 19–71. Addison-Wesley, (1999)Google Scholar
  3. 3.
    Blei, D.M., Jordan, M.I.: Modeling annotated data. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, pp. 127–134 (2003)Google Scholar
  4. 4.
    Böhm, C., Berchtold, S., Kei, D., A.K.: Searching in high-dimensional spaces—index structures for improving the performance of multimedia databases. ACM Computing Surveys, 33(3), 322–373 (2001)Google Scholar
  5. 5.
    Burt, P.J., Adelson, E.H.: The laplacian pyramidas a compact image code. IEEE Trans. Commun. COM-31(4), 532–540 (1983)CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. J. Mach. Learn. Res.5, 913–939 (2004)Google Scholar
  7. 7.
    Ciaccia, P., Patella, M.: Searching in metric spaces with user-defined and approximate distances. ACM Trans. Database Syst. 27(4), 398–437 (2002)Google Scholar
  8. 8.
    de Sá, J.P.M.: Pattern Recognition: Concepts, Methods and Applications. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Dunckley, L.: Multimedia Databases, An Object-Rational Approach. Addison Wesley, USA (2003)Google Scholar
  10. 10.
    Faloutsos, C.: Modern information retrieval. In: Baeza-Yates, R., Ribeiro-Neto, B. (eds.) Modern Information Retrieval, chap. 12, pp. 345–365. Addison-Wesley, Reading (1999)Google Scholar
  11. 11.
    Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.: Efficient and effective querying by image content. J. Intell. Inf. Syst. 3(3/4), 231–262 (1994)CrossRefGoogle Scholar
  12. 12.
    Flickner, M., Sawhney, H., Niblck, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content the QBIC system. In: IEEE Computer, pp. 23–32 (1995)Google Scholar
  13. 13.
    Fonseca, M.J., Jorge, J.A.: Indexing high-dimensional data for content-based retrieval in large databases. In: Proceedings of the 8th International Conference on Database Systems for Advanced Applications, pp. 267–274 (2003)Google Scholar
  14. 14.
    Gonzales, R.C., Woods, E.W.: Digital Image Processing, second edition. Prentice Hall, Upper Saddle River (2001)Google Scholar
  15. 15.
    Hove, L.-J.: Extending image retrieval systems with a thesaurus for shapes. Master’s thesis, Institute for Information and Media Sciences—University of Bergen (2004)Google Scholar
  16. 16.
    Jedrzejek C., C.L.: Fast closest codewordsearch algorithm for vector quantization. In: Proceedings of the IEEE Information Theory Workshop ITW’95 (1995)Google Scholar
  17. 17.
    Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, pp. 119–126 (2003)Google Scholar
  18. 18.
    Lang, S.: Linear Algebra. Addison-Wesley, Reading (1970)zbMATHGoogle Scholar
  19. 19.
    Li, J., Wang, J.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Learn. 25(9), 1075–1088 (2003)CrossRefGoogle Scholar
  20. 20.
    Li, J., Wang, J.: Studying digital imagery of ancient paintings by mixtures of stochastic models. In: IEEE Transactions on Pattern Analysis and Machine Learning, pp. 1–15 (2003b)Google Scholar
  21. 21.
    Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe lsh: Efficient indexing for high-dimensional similarity search. In: Proceedings of the 33rd international conference on Very large data bases, pp. 950–961 (2007)Google Scholar
  22. 22.
    Mirmehdi, M., Periasamy, R.: Cbir with perceptual region features. In: BMVC (2001)Google Scholar
  23. 23.
    Nadler, M., Smith, E.P.: Pattern Recognition Engineering. Wiley, New York (1993)zbMATHGoogle Scholar
  24. 24.
    Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E.H., Petkovic, D., Yanker, P., Faloutsos, C., and Taubin, G. (1993). The qbic project: Querying images by content, using color,texture, and shape. In: Storage and Retrieval for Image and Video Databases (SPIE), pp. 173–187Google Scholar
  25. 25.
    Olafsson, A., Jonsson, B., Amsaleg, L.: Dynamic behavior of balanced nv-trees. In: International Workshop on Content-Based Multimedia Indexing Conference Proceedings, IEEE, pp. 174–183 (2008)Google Scholar
  26. 26.
    Paolo Ciaccia, Marco Patella, P.Z.: M-tree: an efficient access method for similarity search in metric spaces. In: VLDB, pp. 426–435 (1997)Google Scholar
  27. 27.
    Quack, T., Mönich, U., Thiele, L., Manjunath, B.S.: Cortina: a system for large-scale, content-based web image retrieval. In: Proceedings of the 12th annual ACM international conference on Multimedia, pp. 508–511 (2004)Google Scholar
  28. 28.
    Sakurai, Y., Yoshikawa, M., Uemura, S., Kojima, H.: Spatial indexing of high-dimensional data based on relative approximation. VLDB J. 11(2), 93–108 (2002)CrossRefGoogle Scholar
  29. 29.
    Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  30. 30.
    Wang, J., Li, J., Wiederhold, G.: Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)CrossRefGoogle Scholar
  31. 31.
    Wang, J.Z., Wiederhold, G., Firschein, O., Wei, S.X.: Content-based image indexing and searching using daubechies wavelets. Int. J. Digit. Libr. 1(4), 311–328 (1997)Google Scholar
  32. 32.
    Wichert, A.: Content-based image retrieval by hierarchical linear subspace method. J. Intell. Inf. Syst. 31(1), 85–107 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wichert, A.: Subspace indexing for extremely high-dimensional cbir. In: International Workshop on Content-Based Multimedia Indexing Conference Proceedings, IEEE, pp. 330–338 (2008b)Google Scholar
  34. 34.
    Wichert, A.: Subspace tree. In: International Workshop on Content-Based Multimedia Indexing Conference Proceedings, IEEE, pp. 38–44 (2009)Google Scholar
  35. 35.
    Wichert, A., Teixeira, P., Santos, P., Galhardas, H.: Subspace tree: High dimensional multimedia indexing with logarithmic temporal complexity. J. Intell. Inf. Syst. 35(3), 495–516 (2010)CrossRefGoogle Scholar
  36. 36.
    Zaniolo, C., Ceri, S., Snodgrass, R.T., Zicari, R., Faloutsos, C.: Advanced Database Systems. Morgan Kaufmann, San Francisco (1997)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andreas Wichert
    • 1
    Email author
  • André Filipe da  Silva Veríssimo
    • 1
  1. 1.Department of InformaticsINESC-ID/IST, Technical University of LisboaLisbonPortugal

Personalised recommendations