Multimedia Systems

, Volume 18, Issue 2, pp 145–155 | Cite as

Chaos-cryptography based privacy preservation technique for video surveillance

  • Sk. Md. Mizanur RahmanEmail author
  • M. Anwar Hossain
  • Hussein Mouftah
  • Abdulmotaleb El Saddik
  • Eiji Okamoto
Regular Paper


A multimedia surveillance system aims to provide security and safety of people in a monitored space. However, due to the nature of surveillance, privacy-sensitive information such as face, gait, and other physical parameters based on the captured media from multiple sensors, can be revealed without the permission of the people who appear in the surveillance video. This is a major concern in recent days. Therefore, it is desirable to have such mechanism that can hide privacy-sensitive information as much as possible, yet supporting effective surveillance tasks. In this article, we propose a chaos cryptography based data scrambling approach that can be applied on selected regions of interest (ROIs) in video camera footage, which contains privacy-sensitive data. Our approach also supports multiple levels of abstraction of data hiding depending on the role of the authorized user. In order to evaluate the suitability of this approach, we applied our algorithm on some video camera footage and observed that our approach is computationally efficient and, hence, it can be applied for real-time video surveillance tasks in preserving privacy sensitive information.


Privacy and security Chaos sryptography Video surveillance system 


  1. 1.
    Senior, A., Pankanti, S., Hampapur, A., Brown, L., Tian, Y.-L., Ekin, A.: Blinkering Surveillance: Enabling Video Privacy through Computer Vision. IBM Technical Report, RC22886 (W0308-109) August 28 (2003)Google Scholar
  2. 2.
    Fidaleo, D.A., Nguyen, H.A., Trivedi, M.: The networked sensor tapestry (NeST): a privacy enhanced software architecture for interactive analysis of data in video-sensor networks. In: Proc. of the ACM 2nd Int. Workshop on Video Surveillance & Sensor Networks. New York (2004)Google Scholar
  3. 3.
    Moncrieff, S., Venkatesh, S., West, G.: Dynamic privacy assessment in a smart house environment using multimodal sensing. ACM Trans. Multimedia Comput. Commun. Appl. 5(2), 1–29 (2008)CrossRefGoogle Scholar
  4. 4.
    Newton, E., Sweeney, L., Malin, B.: Preserving Privacy by De-identifying Facial Images. Carnegie Mellon University, Technical Report CMU-CS-03-119 (2003)Google Scholar
  5. 5.
    Ponte, I.M., Desurmont, X., Meessen, J., Delaigle, J.-F.: Robust Human Face Hiding Ensuring Privacy. In: Proceedings of International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS). Montreux, Switzerland, April 2005Google Scholar
  6. 6.
    Swanson, M.D., Zhu, B., Tewfik, A.H.: Data Hiding for Video-in-Video. In: Proceedings of International Conference on Image Processing, vol. 2, Oct 1997, pp. 676–679. Google Scholar
  7. 7.
    Zhang, W., Cheung, S.-C.S., Chen, M.: Hiding privacy information in video surveillance system. In: Proceedings of International Conference on Image Processing (ICIP ’05), vol. 3, September 2005, pp. 868–871. Genova, Italy Google Scholar
  8. 8.
    Dufaux, F., Ebrahimi, T.: Scrambling for privacy Protection in Video Surveillance Systems. IEEE Trans. Circuits Syst. Video Technol. 18(8), 1168–1174 (2008)Google Scholar
  9. 9.
    Dufaux, F., Ebrahimi, T.: “Scrambling for video surveillance with privacy. Proceedings of IEEE Workshop on Privacy Research In Vision, New York, p. 160, June 2006Google Scholar
  10. 10.
    Quintiliano, P., Guadagnin, R., Santa-Rosa, A.: Procedures to improve face recognition based on Eigenfaces and principal component analysis. Pattern Recogn. Image Anal. 11(2), 372–375 (2001)Google Scholar
  11. 11.
    Yang, H.G., Kim, E.S.: Practical image encryption scheme by real-valued data. Optic. Eng. 35(9), 2506–2512 (1996)CrossRefGoogle Scholar
  12. 12.
    Lai, X.: On the Design and Security of Block Ciphers, vol. 1. Hartung-Gorre Varlag, Konstantz (1992)Google Scholar
  13. 13.
    Rivest, R., Shamir, A., Adlemen, L.: A method for obtaining digital signatures and public key cryptosystems. Commun. ACM 21(2), 120–126 (1978)zbMATHCrossRefGoogle Scholar
  14. 14.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurcation Chaos 16(8), 2129–2151 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Shujun, L., Uanqin, M.x., Uanlong, C.R., Cample: “Pseudo random bit generator based on chaotic systems and its applications in stream cipher cryptography,” Progress in Cryptology Indocrypt 2001, Lecture Notes in Computer Science (LNCS 2247), Springer, Berlin, pp. 316-329 (2001)Google Scholar
  16. 16.
  17. 17.
    Henon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Forre, R.: The Henon attractor as key stream generator. Abstracts Eurocrypt 91, 76–80 (1991)Google Scholar
  19. 19.
    Jolfaei, A., Mirghadri, A.: An image encryption approach using chaos and stream cipher. J. Theor. Appl. Inf. Technol. 19(2), 117–125 (2010)Google Scholar
  20. 20.
    Zeghid, M., Machhout, M., Khriji, L., Baganne, A., Tourki, R.: A modified AES based algorithm for image encryption. World Acad. Sci. Eng. Technol. 27, 206–211 (2007)Google Scholar
  21. 21.
    Jolfaei, A., Mirghadri, A.: A novel image encryption scheme using pixel shuffler and A5/1. In: IEEE International Conference on Artificial Intelligence and Computational Intelligence, Oct 2010, pp. 369–373Google Scholar
  22. 22.
    Rahman, Sk.Md.M., Hossain, M.A., Mouftah, H., El-Saddik, A., Okamoto, E.: A real-time privacy-sensitive data hiding approach based on chaos cryptography. In: ICME 2010, pp. 72–77 (2010)Google Scholar
  23. 23.
    Yen, J.C., Guo, J.I.: New chaotic key-based design for image encryption and decryption. In: Proceedings of the IEEE 2000 International Symposium on Circuits and Systems, vol. 4, pp. IV-49–IV-52. Geneva, Switzerland, May 2000 (2000)Google Scholar
  24. 24.
    Yen, J.C., Guo, J.I.: Efficient hierarchical chaotic image encryption algorithm and its VLSI realisation. IEE Proc Vision Image Signal Process 147(2), 167–175 (2000)Google Scholar
  25. 25.
    Yen, J.C., Guo, J.I.: A new chaotic image encryption algorithm. In: Proceeding of National Symposium on Telecommunications, pp. 358–362 (1998)Google Scholar
  26. 26.
    Yen, J.C., Guo, J.I.: A new chaotic mirror-like image encryption algorithm and its VLSI architecture. Pattern Recogn. Image Anal. 10(2), 236–247 (2000)Google Scholar
  27. 27.
    Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: International Conference on Image Processing, vol. 1, pp. I-900−I-903, Dec 2002Google Scholar
  28. 28.
    Jakimoski, G., Kocarev, L.: Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst. 48(2), 163–169 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Impagliazzo, R., Levin, L., Luby, M.: Pseudo-random number generation from one-way functions. In: Proc. 21st Annu. Symp. Theory Computing, pp. 12–24 (1989)Google Scholar
  31. 31.
    Luby, M., Rackoff, C.: Howto construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17, 373–386 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Impagliazzo, R., Luby, M.: One-way functions are essential for complexity-based cryptography. In: Proc. 30th Annu. Symp. Foundations Computer Science, pp. 230–235 (1989)Google Scholar
  33. 33.
    Yao, A.: Theory and applications of trapdoor functions. In: IEEE 23rd Symp. Foundations Computer Science, pp. 80–91 (1982)Google Scholar
  34. 34.
    Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM J. Comput. 15, 364–383 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    L’ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of randomnumber generators. ACM Trans, Math. Softw. 33(4), Article 22 (2007)MathSciNetGoogle Scholar
  36. 36.
    Jolfaei, A., Mirghadri, A.: Survey: Image encryption using A5/1 and W7. J. Comput. 2(8), 24–30 (2010)Google Scholar
  37. 37.
    Ahmed, H.H., Kalash, H.M., Farag Allah, O.S.: Encryption quality analysis of RC5 block cipher algorithm for digital images. J. Optic. Eng. 45, 107003 (2006). doi: 10.1117/1.2358991 Google Scholar
  38. 38.
    Rahman, Sk.Md.M., Nasser, N., Inomata, A., Okamoto, T., Mambo, M., Okamoto, E.: Anonymous authentication and secure communication protocol for wireless mobile ad hoc networks. Security Communication Network J. (SCN), ISSN: 1939-0114, 2008 vol. 1, Issue 2, March/ April 2008, John Wiley & Sons, Ltd., Chichester, pp. 179–189Google Scholar
  39. 39.
    Pisarchik, A.N., Zanin, M.: Image encryption with chaotically coupled chaotic maps. Physica D 237(20), 2638–2648 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Chen, G., Mao, Y., Chui, C.: A symmetric image encryption scheme based on 3d chaotic cat maps. Chaos Solitons Fractals 12, 749–761 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sk. Md. Mizanur Rahman
    • 1
    Email author
  • M. Anwar Hossain
    • 2
  • Hussein Mouftah
    • 1
  • Abdulmotaleb El Saddik
    • 1
    • 2
  • Eiji Okamoto
    • 3
  1. 1.School of Information Technology and Engineering (SITE)University of Ottawa, OttawaOntarioCanada
  2. 2.College of Computer and Information Sciences (CCIS)King Saud UniversityRiyadhKSA
  3. 3.Department of Risk EngineeringUniversity of TsukubaTsukubaJapan

Personalised recommendations