Multimedia Systems

, Volume 17, Issue 3, pp 177–197 | Cite as

Enabling resilient P2P video streaming: survey and analysis

  • Osama Abboud
  • Konstantin Pussep
  • Aleksandra Kovacevic
  • Katharina Mohr
  • Sebastian Kaune
  • Ralf Steinmetz
Regular Paper

Abstract

Peer-to-Peer (P2P) techniques for multimedia streaming have been shown to be a good enhancement to the traditional client/server methods when trying to reduce costs and increase robustness. Due to the fact that P2P systems are highly dynamic, the main challenge that has to be addressed remains supporting the general resilience of the system. Various challenges arise when building a resilient P2P streaming system, such as network failures and system dynamics. In this paper, we first classify the different challenges that face P2P streaming and then present and analyze the possible countermeasures. We classify resilience mechanisms as either core mechanisms, which are part of the system, or as cross-layer mechanisms that use information from different communication layers, which might inflict additional costs. We analyze and present resilience mechanisms from an engineering point of view, such that a system engineer can use our analysis as a guide to build a resilient P2P streaming system with different mechanisms and for various application scenarios.

Keywords

Peer-to-Peer (P2P) Video streaming content and multimedia distribution Resilience Adaptation Media coding 

Notes

Acknowledgments

This work was supported by the IT R&D program of MKE/KEIT of South Korea. [10035587, Development of Social TV Service Enabler based on Next Generation IPTV Infrastructure].

References

  1. 1.
    Zhang, X., Liu, J., Li, B., Yum, T.P.: CoolStreaming/DONet: a data-driven overlay network for Peer-to-Peer live media streaming. In: INFOCOM, IEEE (2005)Google Scholar
  2. 2.
    Huang, C., Li, J., Ross, K.W.: Can internet video-on-demand be profitable?. In: ACM SIGCOMM, ACM (2007)Google Scholar
  3. 3.
    Liu, Y., Guo, Y., Liang, C.: A Survey on Peer-to-Peer Video Streaming Systems. Peer-to-Peer Netw. Appl. 1(1), 18–28 (2008)CrossRefGoogle Scholar
  4. 4.
    Jurca, D., Chakareski, J., Wagner, J.P., Frossard, P.: Enabling adaptive video streaming in P2P systems. IEEE Commun. Mag. 45(6), 108–114 (2007)CrossRefGoogle Scholar
  5. 5.
    Pussep, K., Oechsner, S., Abboud, O., Kantor, M., Stiller, B.: Impact of self-organization in Peer-to-Peer overlays on underlay utilization. Int. Conf. Internet Web Appl. Serv. (ICIW). (2009)Google Scholar
  6. 6.
    Abboud, O., Pussep, K., Kovacevic, A., Steinmetz, R.: Quality adaptive peer-to-peer streaming using scalable video coding. Wired-Wireless Multimedia Netw. Serv. Manag. (2009)Google Scholar
  7. 7.
    Pussep, K., Abboud, O., Gerlach, F., Steinmetz, R., Strufe, T.: Adaptive server allocation for Peer-assisted VoD. In: International Parallel and Distributed Processing Symposium (IPDPS), IEEE (2010)Google Scholar
  8. 8.
    Laprie, J.C.: From Dependability to Resilience. In: International Conference on Dependable Systems and Networks (DSN), IEEE/IFIP (2008)Google Scholar
  9. 9.
    Brinkmeier, M., Fischer, M., Grau, S., Schaefer, G., Strufe, T.: Methods for improving resilience in communication networks and P2P overlays. PIK – Praxis der Informationsverarbeitung und Kommunikation 32, 64–7 (2009)CrossRefGoogle Scholar
  10. 10.
    Jiang, X., Dong, Y., Xu, D., Bhargava, B.: GnuStream: A P2P Media streaming system prototype. In: International Conference on Multimedia and Expo (ICME), IEEE (2003)Google Scholar
  11. 11.
    Wu, C., Li, B.: rStream: resilient and optimal Peer-to-Peer streaming with rateless codes. IEEE Trans. Parallel Distrib. Syst. 19(1), 77–92 (2008)CrossRefGoogle Scholar
  12. 12.
    Cascella, R.: The "Value” of reputation in Peer-to-Peer networks. In: Consumer Communications and Networking Conference (CCNC), IEEE (2008)Google Scholar
  13. 13.
    Abboud, O., Kovacevic, A., Graffi, K., Pussep, K., Steinmetz, R.: Underlay awareness in P2P systems: techniques and challenges. In: International Parallel and Distributed Processing Symposium (IPDPS), IEEE (2009)Google Scholar
  14. 14.
    Liu, J., Rao, S.G., Li, B., Zhang, H.: Opportunities and challenges of Peer-to-Peer Internet Video Broadcast. Proc. IEEE 96(1), 11–24 (2008)CrossRefGoogle Scholar
  15. 15.
    Ramamurthy, B., Ghoshal, J., Xu, L.: Variable neighbor selection in live Peer-to-Peer multimedia streaming networks. Technical report, Department of Computer Science and Engineering, University of Nebraska-Lincoln (2007)Google Scholar
  16. 16.
    Ghoshal, J., Xu, L., Ramamurthy, B., Wang, M.: Network architectures for live Peer-to-Peer media streaming. Technical report, Department of Computer Science and Engineering, University of Nebraska-Lincoln (2007)Google Scholar
  17. 17.
    Gifford, D.K., Johnson, K.L., Kaashoek, M.F., Jr., J.W.O.: Overcast: reliable multicasting with an overlay network. In: USENIX Symposium on Operating Systems Design and Implementation (OSDI). (2000)Google Scholar
  18. 18.
    Chu, Y.H., Rao, G., Zhang, H.: A case for end system multicast. In: SIGMETRICS. (2000)Google Scholar
  19. 19.
    Liao, R., Yu, S., Yu, J.: Synchronization-based overlay construction for resilient P2P streaming. In: World Congress on Intelligent Control and Automation (WCICA). (2008)Google Scholar
  20. 20.
    Padmanabhan, V., Wang, H., Chou, P.: Supporting heterogeneity and congestion control in Peer-to-Peer multicast streaming. In: International Peer to Peer Symposium (IPTPS). (2004)Google Scholar
  21. 21.
    Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.: SplitStream: high-bandwidth multicast in cooperative environments. In: Symposium on Operating Systems Principles (SOSP), ACM (2003)Google Scholar
  22. 22.
    Padmanabhan, V.N., Wang, H.J., Chou, P.A.: Resilient Peer-to-Peer streaming. In: IEEE International Conference on Network Protocols (ICNP). (2003)Google Scholar
  23. 23.
    Medard, M., Finn, S.G., Barry, R.A., Gallager, R.G.: Redundant trees for preplanned recovery in arbitrary vertex-redundant or edge-redundant graphs. IEEE/ACM Trans. Netw. 5(7), 641–652 (1999)CrossRefGoogle Scholar
  24. 24.
    Magharei, N., Rejaie, R.: PRIME: Peer-to-Peer receiver-driven mesh-based streaming. In: IEEE INFOCOM. (2007)Google Scholar
  25. 25.
    Magharei, N., Rejaie, R., Guo, Y.: Mesh or multiple-tree: A comparative study of Live P2P streaming approaches. In: IEEE INFOCOM. (2007)Google Scholar
  26. 26.
    Venkataraman, V., Yoshida, K., Francis, P.: Chunkyspread: Heterogeneous unstructured tree-based peer to peer Multicast. In: IEEE International Conference on Network Protocols (ICNP). (2006)Google Scholar
  27. 27.
    Wang, F., Xiongand, Y., Liu, J.: mTreebone: A hybrid tree/mesh overlay for application-layer live video multicast. In: IEEE International Conference on Distributed Computing Systems (ICDCS). (2007)Google Scholar
  28. 28.
    Asaduzzaman, S., Qiao, Y., Bochmann, G.V.: CliqueStream: An Efficient and Fault-resilient Live Streaming Network on a Clustered Peer-to-Peer Overlay. In: IEEE International Conference on Peer-to-Peer Computing (P2P). (2008)Google Scholar
  29. 29.
    Abdouni, B., Cheng, W., Chow, A.L., Golubchik, L., Lee, W.J., Lui, J.C.: Multi-path streaming: optimization and evaluation. In: Multimedia Computing and Networking (MMCN). (2005)Google Scholar
  30. 30.
    Golubchik, L., Lui, J.C.S.: Multi-path streaming: is it worth the trouble?. SIGMETRICS Perform. Eval. Rev. 30(3), 12–14 (2002)CrossRefGoogle Scholar
  31. 31.
    Nguyen, T., Zhakor, A.: Distributed video streaming over internet. In: Conference on Multimedia Computing and Networking (MMCN). (2002)Google Scholar
  32. 32.
    Karrer, R., Gross, T.: Multipath streaming in best-effort networks. In: IEEE International Conference on Communications (ICC). (2003)Google Scholar
  33. 33.
    Wei, W., Zakhor, A.: Path selection for multi-path streaming in wireless ad-hoc networks. In: International Conference on Image In Processing (ICIP), IEEE (2006)Google Scholar
  34. 34.
    Apostolopoulos, J., Wong, T., Tan, W., Wee, S.: On multiple description streaming with content delivery networks. In: IEEE INFOCOM. (2002)Google Scholar
  35. 35.
    Golubchik, L., Lui, J.C.S., Tong, T.F., Chow, L.H., W. J. Lee, G.F., Anglano, C.: Multi-path continuous media streaming: What are the benefits? Tech. Rep. CS-TR-2002-01 (2002)Google Scholar
  36. 36.
    Ghareeb, M.: About multiple paths video-streaming: state of the art. Tech. Rep., INRIA (2008)Google Scholar
  37. 37.
    Setton, E., Baccichet, P., Girod, B.: Peer-to-Peer live multicast: a video perspective. Proc. IEEE 96(1), 25–38 (2008)CrossRefGoogle Scholar
  38. 38.
    Setton, E., Noh, J., Girod, B.: Rate-distortion optimized video Peer-to-Peer multicast streaming. In: Workshop on Advances in Peer-to-Peer Multimedia Streaming at ACM Multimedia. (2005)Google Scholar
  39. 39.
    Mavlankar, A., Noh, J., Baccichet, P., Girod, B.: Optimal server bandwidth allocation for streaming multiple streams via P2P multicast. In: IEEE Workshop on Multimedia Signal Processing (MMSP). (2008)Google Scholar
  40. 40.
    Frossard, P., de Martin, J.C., Civanlar, R.: Media streaming with network diversity. Proc. IEEE 96(1), 39–53 (2008)CrossRefGoogle Scholar
  41. 41.
    Rizzo, L.: Effective erasure codes for reliable computer communication protocols. ACM SIGCOMM Comput. Commun. Rev. 27, 24–36 (1997)CrossRefGoogle Scholar
  42. 42.
    Li, J., Cui, Y., Chang, B.: Peerstreaming: design and implementation of an on-demand distributed streaming system with digital rights management capabilities. Multimedia Syst. 13, 173–190 (2007)CrossRefGoogle Scholar
  43. 43.
    Guo, Q., Zhang, Q., Zhu, W., Zhang, Y.Q.: Sender-adaptive and receiver-driven video multicasting. In: International Symposium on Circuits and Systems (ISCAS), IEEE (2001)Google Scholar
  44. 44.
    Rhee, I.: Error control techniques for interactive low-bit-rate video transmission over the internet. In: ACM SIGCOMM. (1998)Google Scholar
  45. 45.
    Dan, G., Chatzidrossos, I., Fodor, V., Karlsson, G.: On the performance of error-resilient end-point-based multicast streaming. In: IEEE International Workshop on Quality of Service (IWQoS). (2006)Google Scholar
  46. 46.
    Kaune, S., Pussep, K., Tyson, G., Mauthe, A., Steinmetz, R.: Cooperation in P2P Systems through Sociological Incentive Patterns. In: 3rd International Workshop on Self-Organizing Systems (IWSOS), Springer (2008) 10–22Google Scholar
  47. 47.
    Habib, A., Chuang, J.: Incentive mechanism for Peer-to-Peer media streaming. In: IEEE International Workshop on Quality of Service (IWQoS). (2004)Google Scholar
  48. 48.
    Piatek, M., Krishnamurthy, A., Venkataraman, A., Yang, R., Zhang, D., Jaffe, A.: Contracts: practical contribution incentives for p2p live streaming. In: In USENIX NSDI. (2010)Google Scholar
  49. 49.
    Abboud, O., Zinner, T., Lidanski, E., Pussep, K., Steinmetz, R.: StreamSocial: A P2P streaming system with social incentives. In: IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM). (2010)Google Scholar
  50. 50.
    Cohen, B.: Incentives build Robustness in bitTorrent. In: 1st Workshop on Economics of Peer-to-Peer Systems. (2003)Google Scholar
  51. 51.
    Liu, Z., Shen, Y., Panwar, S.S., Ross, K.W., Wang, Y.: Using layered video to provide incentives in P2P live streaming. In: Proceedings of the 2007 workshop on Peer-to-peer streaming and IP-TV. P2P-TV ’07, New York, NY, USA, ACM (2007) 311–316Google Scholar
  52. 52.
    Li, H., Clement, A., Marchetti, M., Kapritsos, M., Robinson, L., Alvisi, L., Dahlin, M.: FlightPath: Obedience vs Choice in Cooperative Services. In: OSDI 2008. (2008)Google Scholar
  53. 53.
    Ruohomaa, S., Kutvonen, L., Koutrouli, E.: Reputation management survey. In: International Conference on Availability, Reliability and Security (ARES). (2007)Google Scholar
  54. 54.
    S. Song, K. Hwang, R.Z., Kwok, Y.K.: Trusted P2P transactions with fuzzy reputation aggregation. IEEE Internet Comput. 6(9), 24–34 (2005)CrossRefGoogle Scholar
  55. 55.
    Xiong, L., Liu, L.: PeerTrust: supporting reputation-based trust for Peer-to-Peer electronic communities. IEEE Trans. Knowl. Data Eng. 7(16), 843–857 (2004)CrossRefGoogle Scholar
  56. 56.
    Lee, S.R.S., Bhattacharjee, B.: Cooperative Peer groups in NICE. In: IEEE INFOCOM. (2003)Google Scholar
  57. 57.
    Yu, B., Singh, M.P.: Distributed reputation management for electronic commerce. Comput. Intell. 18(4), 535–549 (2002)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Kaune, S., Tyson, G., Pussep, K., Mauthe, A., Steinmetz, R.: The seeder promotion problem: measurements, analysis and solution space. In: IEEE International Conference on Computer Communications and Networks (ICCCN). (2010)Google Scholar
  59. 59.
    Zhang, X.Y., Zhang, Q., Zhang, Z., Song, G., Zhu, W.: A construction of locality-aware overlay network: mOverlay and its performance. IEEE J. Sel. Areas Commun. 1(22), 18–28 (2004)CrossRefGoogle Scholar
  60. 60.
    Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Topology-aware routing in structured Peer-to-Peer overlay networks. In: Schiper, A., Shvartsman, A.A., Weatherspoon, H., Zhao, B.Y., (eds.) Future directions in distributed computing. Springer 103–107 (2003)Google Scholar
  61. 61.
    Yu, Y., Lee, S., Zhang, Z.L.: Leopard: a locality aware Peer-to-Peer system with no Hot Spot. In: International Conferences on Networking. (2005)Google Scholar
  62. 62.
    Liang, J., Nahrstedt, K.: DagStream: Locality aware and failure resilient Peer-to-Peer streaming. In: SPIE/ACM Multimedia Computing and Networking (MMCN). (2006)Google Scholar
  63. 63.
    Tran, D.A., Hua, K.A., Do, T.: ZIGZAG: An efficient Peer-to-Peer scheme for media streaming. In: IEEE INFOCOM. (2003)Google Scholar
  64. 64.
    Liao, X., Jin, H., Liu, Y., Ni, L.M., Deng, D.: AnySee: Peer-to-Peer Live streaming. In: IEEE INFOCOM. (2006)Google Scholar
  65. 65.
    Schwarz, H., Marpe, D., Wiegand, T.: Overview of the Scalable Video Coding Extension of the H.264/AVC Standard. IEEE Trans. Circuits Syst. Video Technol. 17(9), 1103–1120 (2007)CrossRefGoogle Scholar
  66. 66.
    Baccichet, P., Schierl, T., Wiegand, T., Girod, B.: Low-delay peer-to-peer streaming using scalable video coding. In: Packet Video Workshop (2007)Google Scholar
  67. 67.
    Abboud, O., Zinner, T., Pussep, K., Al-Sabea, S., Steinmetz, R.: On the impact of quality adaptation in SVC-based P2P video-on-demand systems. In: ACM Multimedia Systems 2011, ACM (2011)Google Scholar
  68. 68.
    Cui, Y., Nahrstedt, K.: Layered peer-to-peer streaming. In: International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV) (2003)Google Scholar
  69. 69.
    Shen, Y., Liu, Z., Panwar, S.S., Ross, K.W., Wang, Y.: Streaming layered encoded video using peers. In: IEEE International Conference on Multimedia and Expo (2005)Google Scholar
  70. 70.
    Chakareski, J., Han, S., Girod, B.: Layered Coding vs. Multiple Descriptions for Video Streaming over Multiple Paths. Multimed. Syst. 10, 275–285 (2005)CrossRefGoogle Scholar
  71. 71.
    Nguyen, A., Li, B., Elisassen, F.: Chameleon: Adaptive peer-to-peer streaming with network coding. In: IEEE INFOCOM (2010)Google Scholar
  72. 72.
    Wang, M., Li, B.: R2: random push with random network coding in live peer-to-peer streaming. IEEE J. Sel. Areas Commun. 25(9), 1655–1666 (2007)CrossRefGoogle Scholar
  73. 73.
    Liu, Z., Wu, C., Li, B., Zhao, S.: UUSee: Large-scale operational on-demand streaming with random network coding. In: IEEE INFOCOM (2010)Google Scholar
  74. 74.
    Shojania, H., Li, B.: Tenor: making coding practical from servers to smartphones. In: ACM International Conference on Multimedia (2010)Google Scholar
  75. 75.
    Nafaa, A., Taleb, T., Murphy, L.: Forward error correction strategies for media streaming over wireless networks. IEEE Commun. Mag. 46(1), 72–79 (2008)CrossRefGoogle Scholar
  76. 76.
    Schuman, C.D., Plank, J.S.: A performance comparison of open-source erasure coding libraries for storage applications. Technical report UT-CS-08-625. Department of Electrical Engineering and Computer Science, University of Tennessee, Tennessee (2008)Google Scholar
  77. 77.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8, 300–304 (1960)Google Scholar
  78. 78.
    Johannesson, R., Zigangirov, K.S.: Fundamentals of convolutional coding. IEEE Press, Series on digital and mobile communication (1999)Google Scholar
  79. 79.
    Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inform. Theory 8(1), 21–28 (1962)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Schmidt, G., Sidorenko, V.R., Bossert, M.: Collaborative decoding of interleaved reed-solomon codes and concatenated code designs. CoRR (2006)Google Scholar
  81. 81.
    Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: a distributed anonymous information storage and retrieval system. In: International Workshop on Design Issues in Anonymity and Unobservability (2000)Google Scholar
  82. 82.
    Druschel, P., Rowstron, A.: Past: a large-scale, persistent peer-to-peer storage utility. In: Workshop on Hot Topics in Operating Systems (HotOS) (2001)Google Scholar
  83. 83.
    Strufe, T.: A peer-to-peer-based approach for the transmission of live multimedia streams. PhD thesis, TU Ilmenau (2007)Google Scholar
  84. 84.
    Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., Keleher, P.: Adaptive replication in peer-to-peer systems. In: IEEE International Conference on Distributed Computing Systems (ICDCS) (2004)Google Scholar
  85. 85.
    Small, T., Liang, B., Li, B.: Scaling laws and tradeoffs in peer-to-peer live multimedia streaming. In: ACM International Conference on Multimedia (2006)Google Scholar
  86. 86.
    Wu, D., Hou, Y.T., Zhu, W., Zhang, Y.Q., Peha, J.M.: Streaming video over the internet: approaches and directions. IEEE Trans Circuits Syst. Video Technol. 11(3), 282–300 (2001)CrossRefGoogle Scholar
  87. 87.
    Miao, Z., Ortega, A.: Proxy caching for efficient video services over the Internet. In: International Packet Video Workshop (PVW) (1999)Google Scholar
  88. 88.
    Kermode, R.G.: Smart network caches: Localized content and application negotiated recovery mechanisms for multicast media distribution. PhD thesis, MIT, Cambridge (1998)Google Scholar
  89. 89.
    Lin, W.K., Chiu, D.M., Lee, Y.B.: Erasure code replication revisited. In: IEEE International Conference on Peer-to-Peer Computing (P2P) (2004)Google Scholar
  90. 90.
    Liu, T., Nelakuditi, S.: Disruption-tolerant content-aware video streaming. In: ACM International Conference on Multimedia (2004)Google Scholar
  91. 91.
    Jiang, H., Jin, S.: NSYNC: Network synchronization for peer-to-peer streaming overlay construction. In: International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV), ACM (2006)Google Scholar
  92. 92.
    Abboud, O., Zinner, T., Pussep, K., Oechsner, S., Steinmetz, R., Tran-Gia, P.: A QoE-aware P2P streaming system using scalable video coding. In: IEEE International Conference on Peer-to-Peer Computing (P2P) (2010)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Osama Abboud
    • 1
  • Konstantin Pussep
    • 1
  • Aleksandra Kovacevic
    • 1
  • Katharina Mohr
    • 1
  • Sebastian Kaune
    • 1
  • Ralf Steinmetz
    • 1
  1. 1.Multimedia Communications LabTechnische Universitaet DarmstadtDarmstadtGermany

Personalised recommendations