Multimedia Systems

, Volume 17, Issue 4, pp 313–326 | Cite as

M-MUSICS: an intelligent mobile music retrieval system

Regular Paper

Abstract

Accurate voice humming transcription and efficient indexing and retrieval schemes are essential to a large-scale humming-based audio retrieval system. Although much research has been done to develop such schemes, their performance in terms of precision, recall, and F-measure, among all similarity metrics, are still unsatisfactory. In this paper, we propose a new voice query transcription scheme. It considers the following features: note onset detection using dynamic threshold methods, fundamental frequency (F0) acquisition of each frame, and frequency realignment using K-means. We use a popularity-adaptive indexing structure called frequently accessed index (FAI) based on frequently queried tunes for indexing purposes. In addition, we propose a semi-supervised relevance feedback and query reformulation scheme based on a genetic algorithm to improve retrieval efficiency. In this paper, we extend our efforts to mobile multimedia environments and develop a mobile audio retrieval system. Experiments show our system performs satisfactory in wireless mobile multimedia environments.

Keywords

Content-based audio retrieval Mobile platform Relevance feedback Signal processing 

References

  1. 1.
    Pham, B., Wong, O.: Handheld devices for applications using dynamic multimedia data. In: Proceedings of graphite (2004)Google Scholar
  2. 2.
    Paraskevi, L., Aristomenis L., George T.: Intelligent mobile content-based retrieval from digital music libraries. Intell. Decis. Tech. 3(3), 123–138 (2009). doi:10.3233/IDT-2009-0060
  3. 3.
    Barrington, L., Chan, A., Turnbull, D., Lanckriet, G.: Audio information retrieval using semantic similarity. In: ICASSP, pp.725–728 (2007)Google Scholar
  4. 4.
    Gagliardi, l., Pagliarulo, P.: Audio information retrieval in HyperMedia environment. In: ACM conference on Hypertext and hypermedia, pp. 248–250 (2005)Google Scholar
  5. 5.
    Batlle, E., Masip, J., Guaus, E.: Amadeus: A scalable HMM-based audio information retrieval system. In: ISCCSP, pp. 731–734 (2004)Google Scholar
  6. 6.
    Schnelle, D., James, F.: Structured audio information retrieval system, pp. 1–12. Mobile Computing and Ambient Intelligence (2005)Google Scholar
  7. 7.
    Jang, J.S.R., Chun, J., Kao, M.-Y.: MIRACLE: a music information retrieval system with clustered computing engines, pp. 11–12. ISMIR (2001)Google Scholar
  8. 8.
    Ghias, A., Logan, J., Chamberlin, D., Smith, B.: Query by humming—musical information retrieval in an audio database. In: Proceedings of ACM multimedia, pp. 231–236 (1995)Google Scholar
  9. 9.
    Chen, L., Hu, B.: An implementation of web based query by humming system, pp. 1467–1470. ICME (2007)Google Scholar
  10. 10.
    Rho, S., Han, B., Hwang, E., Kim, M.: MUSEMBLE: a novel music retrieval system with automatic voice query transcription and reformulation. J. Syst. Softw. 81(7), 1065–1080 (2008). doi:10.1016/j.jss.2007.05.038 Google Scholar
  11. 11.
    Park, S., Kim, S., Byeon, K., Hwang, E.: Automatic voice query transformation for query-by-humming systems, pp. 197–202. IMSA (2005)Google Scholar
  12. 12.
    Zhang, W., Xu, G., Wang, Y.: Pitch extraction based on circular AMDF. In: ICASSP, pp. 341–344 (2002)Google Scholar
  13. 13.
    Ross, M. J.: Average magnitude difference function pitch extractor. IEEE Trans. Acoust. 22(1), 353–362 (1974)Google Scholar
  14. 14.
  15. 15.
    Bello, J.P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., Sandler, M.B.: A tutorial on onset detection in music signals. IEEE Trans. Speech. Audio. Process. 13(5), 1035–1047 (2005). doi:10.1109/TSA.2005.851998 Google Scholar
  16. 16.
    Duxbury, C., Bello, J. P.: Complex domain Onset Detection for Musical Signals. In: DAFx (2003)Google Scholar
  17. 17.
    Klapuri, A.: Sound onset detection by applying psychoacoustic knowledge. In: ICASSP, pp. 115–118 (1999)Google Scholar
  18. 18.
    Gainza: Onset detection and music transcription for the Irish Tin Whistle. In: Proceedings of the Irish systems and signals conference (2004)Google Scholar
  19. 19.
    Leveau, P., Richard, L. D. G.: Methodology and tools for the evaluation of automatic onset detection algorithms in music, pp. 72–75. ISMIR (2004)Google Scholar
  20. 20.
  21. 21.
    Eric, L., Maddox, R.: Real-time time-domain pitch tracking using wavelets. In: REU Report, University of Illinois at Urbana-Champaign, Department of Physics (2005)Google Scholar
  22. 22.
    Ryynanen, M., Klapuri A.: Transcription on the singing melody in polyphonic music, ISMIR (2006)Google Scholar
  23. 23.
    Klapuri, A.: A perceptually motivated multiple-F0 estimation method. In: WASPAA, pp. 291–294 (2005)Google Scholar
  24. 24.
    Roger, J., Lee, H. R.: A general framework of progressive filtering and its application to query by singing/humming. IEEE Trans. Audio. Speech. Lang. Process. 2(16), 350–358 (2008). doi:10.1109/TASL.2007.913035 Google Scholar
  25. 25.
    Hoashi, K., Zeitler, E., Inoue, N.: Implementation of relevance feedback for content-based music retrieval based on user preferences. In: ACM SIGIR, pp. 385–286 (2002)Google Scholar
  26. 26.
  27. 27.
    Rui, Y., Huang, T. S., Ortega, M. Mehrotra, S.: Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans. Circuits. Syst. Video. Technol. 8(5), 644–655 (1998)Google Scholar
  28. 28.
    Stejic, Z., Takama, Y., and Hirota, K.: Genetic algorithm based relevance feedback for image retrieval using local similarity patterns. Inf. Process. Manag. 39(1), 1–23 (2003). doi:10.1016/S0306-4573(02)00024-9
  29. 29.
    Karydis, I., Nanopoulos, A., Papadopoulos, A., Katsaros, D., Manolopoulos, Y.: Content-based music information retrieval in wireless ad-hoc networks, pp. 137–144. ISMIR (2005)Google Scholar
  30. 30.
    Lampropoulou, P.S., Lampropoulos, A.S., Tsihrintzis, G.A.: Alimos: A middleware system for accessing digital music libraries in mobile services. In: Proceedings of 10th international conference on knowledge-based and intelligent information and engineering systems, pp. 384–391 (2006)Google Scholar
  31. 31.
    Savitzkey, A., Golay, M. J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)Google Scholar
  32. 32.
    MacQueen J.: some methods for classification and analysis of multivariate observations. In: Proceedings of knowledge discovery and data mining, pp. 16–22 (1967)Google Scholar
  33. 33.
    Rho, S., Hwang, E.: FMF: Query adaptive melody retrieval system. J. Syst. Softw. 79(1), 43–56 (2006). doi:10.1016/j.jss.2004.11.024 Google Scholar
  34. 34.
    AKOff sound labs. http://www.akoff.com/
  35. 35.
    Digital Ear. Real-time wav to MIDI converter. http://www.digital-ear.com/
  36. 36.
    Ross, M.J.: Average magnitude difference function pitch extractor. IEEE Trans. Acoust. 22(1), 353–362 (1974)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of Electrical EngineeringKorea UniversitySeoulKorea
  2. 2.Department of Computer Science and EngineeringSeoul National University of Science and TechnologySeoulKorea

Personalised recommendations