Multimedia Systems

, Volume 16, Issue 4–5, pp 255–274 | Cite as

Semantic user profiling techniques for personalised multimedia recommendation

Regular Paper

Abstract

Due to the explosion of news materials available through broadcast and other channels, there is an increasing need for personalised news video retrieval. In this work, we introduce a semantic-based user modelling technique to capture users’ evolving information needs. Our approach exploits implicit user interaction to capture long-term user interests in a profile. The organised interests are used to retrieve and recommend news stories to the users. In this paper, we exploit the Linked Open Data Cloud to identify similar news stories that match the users’ interest. We evaluate various recommendation parameters by introducing a simulation-based evaluation scheme.

Keywords

Long-term user profiling Video annotation Multimedia recommendation Evaluation User simulation Semantic web technologies 

References

  1. 1.
    Spink, A., Greisdorf, H., Bateman, J.: From highly relevant to not relevant: examining different regions of relevance. Inf. Process. Manage. 34(5), 599–621 (1998)CrossRefGoogle Scholar
  2. 2.
    Nichols, D.M.: Implicit rating and filtering. In: Proceedings of 5th DELOS Workshop on Filtering and Collaborative Filtering, pp 31–36, ERCIM (1998)Google Scholar
  3. 3.
    Campbell, I., van Rijsbergen, C.J.: The ostensive model of developing information needs. In: Proceedings of the Conference Library Science, pp 251–268 (1996)Google Scholar
  4. 4.
    Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and TRECVid. In: Proceedings of MIR’ 2006, pp 321–330 (2006)Google Scholar
  5. 5.
    Smeaton, A.F., Wilkins, P., Worring, M., de Rooij, O., Chua, T.S., Luan, H.: Content-based video retrieval: three example systems from TRECVid. Int. J. Imaging Syst. Technol. 18(2–3), 195–201 (2008)CrossRefGoogle Scholar
  6. 6.
    Chen, L., Sycara, K.: WebMate: a personal agent for browsing and searching. In: Proceedings of the Autonomous Agents, pp 132–139. New York (1998)Google Scholar
  7. 7.
    Hancock-Beaulieu, M., Walker, S.: An evaluation of automatic query expansion in an online library catalogue. J. Documentation 48(4), 406–421 (1992)CrossRefGoogle Scholar
  8. 8.
    Bharat, K., Kamba, T., Albers, M.: Personalized, interactive news on the Web. Multimedia Syst. 6(5), 349–358 (1998)CrossRefGoogle Scholar
  9. 9.
    Luo, H., Fan, J., Keim, D.A., Satoh, S.: Personalized news video recommendation. In: Proceedings of MMM’09, pp 459–471 (2009)Google Scholar
  10. 10.
    Gruber, T.R.: Towards principles for the design of ontologies used for knowledge sharing. Int. J. Hum. Comput. Stud. 43(5–6), 907–928 (1995)CrossRefGoogle Scholar
  11. 11.
    Fernández, N., Blazquez, J.M., Fisteus, J.A., Sanchez, L., Sintek, M., Bernardi, A., Fuentes, M., Marrara, A., Ben-Ahser, Z.: News: bringing semantic web technologies into news agencies. In: Proceedings of the Semantic Web Conference, pp 778–791 (2006)Google Scholar
  12. 12.
    Jokela, S., Sulonen, R., Turpeinen, M.: Agents in delivering personalized content based on semantic metadata. In: Proceedings of Intelligent Agents in Cyberspace, pp 84–93 (1999)Google Scholar
  13. 13.
    Gauch, S., Chaffee, J., Pretschner, A.: Ontology-based personalized search and browsing. Web Intell. Agent Syst. 1(3–4), 219–234 (2003)Google Scholar
  14. 14.
    Järvelin, K., Kekäläinen, J., Niemi, T.: ExpansionTool: concept-based query expansion and construction. Inf. Retr. 4(3), 231–251 (2001)MATHCrossRefGoogle Scholar
  15. 15.
    Bhogal, J., Macfarlane, A., Smith, P.: A review of ontology based query expansion. Inf. Process. Manage. 43(2007), 866–886 (2007)CrossRefGoogle Scholar
  16. 16.
    Bürger, T., Gams, E., Güntner, G.: Smart content factory: assisting search for digital objects by generic linking concepts to multimedia content. In: Proceedings of HT, pp 286–287 (2005)Google Scholar
  17. 17.
    Dudev, M., Elbassuoni, S., Luxenburger, J., Ramanath, M., Weikum, G.: Personalizing the search for knowledge. In: Proceedings of PersDB, 08 (2008)Google Scholar
  18. 18.
    Holzinger, A.: Usability engineering for software developers. In: Communications of the ACM, vol. 48, no. 1, pp 71–74 (2005)Google Scholar
  19. 19.
    Kelly, D., Dumais, S.T., Pederson, J.O.: Evaluation challenges and directions for information-seeking support systems. IEEE Comput. 42(3), 60–66 (2009)Google Scholar
  20. 20.
    Vorhees, E. On test collections for adaptive information retrieval. Inf. Process. Manage. 44(6) (2008)Google Scholar
  21. 21.
    Spärck-Jones, K., Willett, P.: Evaluation. In: Readings in Information Retrieval, chap. 4, pp 67–74. Morgan Kaufmann (1997)Google Scholar
  22. 22.
    Finin, T.W.: GUMS: a general user modelling shell. In: User Models in Dialog Systems, pp 41–430 (1989)Google Scholar
  23. 23.
    Ivory, M., Hearst, M.: The state of art in automating usability evaluation of user interfaces. ACM Comput. Surv. 33(4), 470–516 (2001)CrossRefGoogle Scholar
  24. 24.
    Hopfgartner, F., Jose, J.M.: On user modelling for personalised news video recommendation. In: Proceedings of UMAP’09, pp 403–408 (2009)Google Scholar
  25. 25.
    Hopfgartner, F., Jose, J.M.: Semantic user modelling for personal news video retrieval. In: Proceedings in MMM’10, pp 336–346, Springer (2010)Google Scholar
  26. 26.
    O’Connor, N., Czirjek, C., Deasy, S., Marlow, S., Murphy, N., Smeaton, A.: News story segmentation in the Físchlár video indexing system. In: Proceedings of CIP (2001)Google Scholar
  27. 27.
    Misra, H., Hopfgartner, F., Goyal, A., Punitha, P., Jose, J.M.: TV news story segmentation based on semantic coherence and content similarity. In: Proceedings of MMM’10, pp 347–357. Springer, Chongqing, China (2005)Google Scholar
  28. 28.
    Campbell, I., van Rijsbergen, C.J.: The ostensive model for developing information needs. In: Proceedings of CCLS, pp 251–268 (1996)Google Scholar
  29. 29.
    Bagga, A., Baldwin, B.: Entity-based cross-document coreferencing using the vector space model. In: Proceedings of Computational Linguistics, pp 79–85 (1998)Google Scholar
  30. 30.
    Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple weighted fields. In: Proceedings of CIKM’04, pp 42–49 (2004)Google Scholar
  31. 31.
    Choicestream: Personalization Survey. Technical report, Choicestream Inc. (2007)Google Scholar
  32. 32.
    Lioma, C., Ounis, I.: Examing the content load of part of speech blocks for information retrieval. In: ACL’06, pp 531–538 (2006)Google Scholar
  33. 33.
    Dix, A., Finlay, J., Beale, R.: Analysis of user behaviour as time series. In: Proceedings of HCI, pp 429–444 (1993)Google Scholar
  34. 34.
    Hopfgartner, F., Jose, J.M.: Evaluating the implicit feedback models for adaptive video retrieval. In: Proceedings of MIR’07, pp 323–331 (2007)Google Scholar
  35. 35.
    Bezold, M.: Describing user interactions in adaptive interactive systems. In: Proceedings of UMAP’09, pp 150–161 (2009)Google Scholar
  36. 36.
    Vallet, D., Hopfgartner, F., Jose, J.M.: Use of implicit graph for recommending relevant videos: a simulated evaluation. In: Proceedings of ECIR’08, pp 199–210 (2008)Google Scholar
  37. 37.
    Borlund, P.: The IIR evaluation model: a framework for evaluation of interactive information retrieval systems. Inf. Res. 8(3) (2003)Google Scholar
  38. 38.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Computing ScienceUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations