Multimedia Systems

, Volume 17, Issue 1, pp 51–82 | Cite as

Challenges and techniques for video streaming over mobile ad hoc networks

  • Morten Lindeberg
  • Stein Kristiansen
  • Thomas Plagemann
  • Vera Goebel
Regular Paper

Abstract

Developments in mobile devices and wireless networking provide the technical platform for video streaming over mobile ad hoc networks (MANETs). However, efforts to realize video streaming over MANETs have met many challenges, which are addressed by several different techniques. Examples include cross-layer optimization, caching and replication, and packet prioritization. Cross-layer optimization typically leverages multiple description video coding and multipath routing to provide the receiver(s) sufficient video quality. Caching and replication add tolerance to disruptions and partitioning. In this paper, we identify the challenges of realizing video streaming over MANETs, and analyze and classify the proposed techniques. Since 65 % of the identified involve cross-layering design, we study the distribution of joint optimization and parameter exchanges. Due to the importance and complexity of evaluating the techniques, we analyze the common methods, indicating that the research domain suffers from a problem of comparability.

Keywords

Video streaming MANETs Cross-layer design 

References

  1. 1.
    Cisco Systems Cisco Visual Networking Index: Forecast and Methodology, 2008–2013. Technical report, Cisco Systems (2009)Google Scholar
  2. 2.
    Halvorsen, M., Plagemann, T., Siekkinen, M.: Video streaming over manets: reality or fiction? In: MobiMedia ’08, Proceedings of the 4th International Mobile Multimedia Communications Conference (2008)Google Scholar
  3. 3.
    Braden, R.: Requirements for internet hosts—communication layers. RFC 1122 (1989)Google Scholar
  4. 4.
    Rajaraman, R.: Topology control and routing in ad hoc networks: a survey. SIGACT News 33(2), 60–73 (2002)CrossRefGoogle Scholar
  5. 5.
    Feeney, L.M.: A taxonomy for routing protocols in mobile ad hoc networks. Technical report, SICS—Swedish Institute of Computer Science (1999)Google Scholar
  6. 6.
    Telecommunication Standardization Sector (ITU-T): draft ITU-T recommendation and final draft international standard of joint video specification (ITU-T rec. H.264/ISO/IEC 14 496-10 AVC) (2003)Google Scholar
  7. 7.
    Gharavi, H.: Control based mobile ad-hoc networks for video communications. IEEE Trans. Consum. Electron. 52(2), 383–391 (2006)CrossRefGoogle Scholar
  8. 8.
    Li, Z., Li, B., Wang, M.: Optimization models for streaming in multihop wireless networks, 2007. In: ICCCN 2007. Proceedings of 16th International Conference on Computer Communications and Networks, pp. 457–463 (2007)Google Scholar
  9. 9.
    Fu, Z., Meng, X., Lu, S.: A transport protocol for supporting multimedia streaming in mobile ad hoc networks. IEEE J. Sel. Areas Commun. 21(10), 1615–1626 (2003)CrossRefGoogle Scholar
  10. 10.
    Jan, F., Mathieu, B., Meddour, D.: Video streaming experiment on deployed ad hoc network. In: 3rd International Conference on Testbeds and Research Infrastructure for the Development of Networks and Communities, 2007. TridentCom 2007, pp. 1–10 (2007)Google Scholar
  11. 11.
    Adlakha, S., Zhu, X., Girod, B., Goldsmith, A.: Joint capacity, flow and rate allocation for multiuser video streaming over wireless ad-hoc networks. In: IEEE International Conference on Communications, 2007. ICC ’07, pp. 1747–1753 (2007)Google Scholar
  12. 12.
    IEEE 802.11e/D5.0: Draft Supplement to Part 11: wireless medium access control (MAC) and physical layer (PHY) specifications: medium access control (MAC) enhancements for quality of service (QoS) (2003)Google Scholar
  13. 13.
    Liang, H., Ke, C., Shieh, C., Hwang, W., Chilamkurti, N.: Performance evaluation of 802.11e EDCF in the ad-hoc mode with real audio/video traffic. In: IFIP International Conference on Wireless and Optical Communications Networks, 2006, vol. 6, p. 6 (2006)Google Scholar
  14. 14.
    Hortelano, J., Cano, J.C., Calafate, C.T., Manzoni, P.: Evaluating the performance of real time videoconferencing in ad hoc networks through emulation. In: PADS ’08: Proceedings of the 22nd Workshop on Principles of Advanced and Distributed Simulation, Washington, DC, USA, pp. 119–126. IEEE Computer Society (2008)Google Scholar
  15. 15.
    Asif, H.M., Sheltami, T.R., Shakshuki, E.E.: Power consumption optimization and delay minimization in MANET. In: MoMM ’08: Proceedings of the 6th International Conference on Advances in Mobile Computing and Multimedia, New York, NY, USA, pp. 67–73. ACM (2008)Google Scholar
  16. 16.
    Gharavi, H.: Multi-channel for multihop communication links. In: International Conference on Telecommunications, 2008. ICT 2008, pp. 1–6 (2008)Google Scholar
  17. 17.
    Karlsson, J., Li, H., Eriksson, J.: Real-time video over wireless ad-hoc networks. In: Proceedings of 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005, p. 596 (2005)Google Scholar
  18. 18.
    Calafate, C.T., Malumbres, M.P., Manzoni, P.: Performance of H.264 compressed video streams over 802.11b based MANETs. In: ICDCSW ’04: Proceedings of the 24th International Conference on Distributed Computing Systems Workshops-W7: EC (ICDCSW’04), Washington, DC, USA, pp. 776–781. IEEE Computer Society (2004)Google Scholar
  19. 19.
    Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. In: Proceedings of WMCSA ’99 Mobile Computing Systems and Applications, 1999, pp. 90–100 (1999)Google Scholar
  20. 20.
    Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., Viennot, L.: Optimized link state routing protocol for ad hoc networks. In: Proceedings of IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century, pp. 62–68 (2001)Google Scholar
  21. 21.
    Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks, pp. 153–181 (1996)Google Scholar
  22. 22.
    Park, V., Corson, M.: A highly adaptive distributed routing algorithm for mobile wireless networks. In: INFOCOM ’97. Proceedings of IEEE Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1405–1413 (1997)Google Scholar
  23. 23.
    Xue, P., Chandra, S.: Revisiting multimedia streaming in mobile ad hoc networks. In: NOSSDAV ’06: Proceedings of the 2006 International Workshop on Network and Operating Systems Support for Digital Audio and Video, New York, NY, USA, pp. 1–7. ACM (2006)Google Scholar
  24. 24.
    Liu, T., Nelakuditi, S.: Disruption-tolerant content-aware video streaming. In: MULTIMEDIA ’04: Proceedings of the 12th Annual ACM International Conference on Multimedia, New York, NY, USA, pp. 420–423. ACM (2004)Google Scholar
  25. 25.
    Macias, E.M., Suarez, A., Martin, J., Sunderam, V.: Using OLSR for seamless streaming video in 802.11 ad hoc networks. In: IMECS 2006: International Multiconference of Engineers and Computer Scientists, pp. 932–937 (2006)Google Scholar
  26. 26.
    Calafate, C.T., Manzoni, P., Malumbres, M.P.: Speeding up the evaluation of multimedia streaming applications in MANETs using HMMs. In: MSWiM ’04: Proceedings of the 7th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, New York, NY, USA, pp. 315–322. ACM (2004)Google Scholar
  27. 27.
    He, Z., Wu, D.: Resource allocation and performance analysis of wireless video sensors. IEEE Trans. Circuits Syst. Video Technol. 16(5), 590–599 (2006)CrossRefGoogle Scholar
  28. 28.
    Wang, H.: A hierarchical queueing model for streaming video over multi-hop wireless networks. In: Fifth International Conference on Information Technology: New Generations, 2008. ITNG 2008, pp. 1065–1070 (2008)Google Scholar
  29. 29.
    Camp T., Boleng J., Davies V.: A survey of mobility models for ad hoc network research. Wirel. Commun. Mobile Comput. 2(5), 483–502 (2002)Google Scholar
  30. 30.
    Pagano, P., Chitnis, M., Lipari, G.: RTNS: an NS-2 extension to simulate wireless real-time distributed systems for structured topologies. In: WICON ’07: Proceedings of the 3rd International Conference on Wireless Internet, pp. 1–8 (2007)Google Scholar
  31. 31.
    Keranen, A., Ött, J.: Increasing reality for dtn protocol simulations. Technical report, Helsinki University of Technology, Networking Laboratory (2007)Google Scholar
  32. 32.
    Ahmed, N., Natarajan, T., Rao, K.: Discrete cosine transfom. IEEE Trans. Comput. C-23(1), 90–93 (1974)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Malvar, H., Hallapuro, A., Karczewicz, M., Kerofsky, L.: Low-complexity transform and quantization in h.264/avc. IEEE Trans. Circuits Syst. Video Technol. 13(7), 598–603 (2003)CrossRefGoogle Scholar
  34. 34.
    Wiegand, T., Sullivan, G., Bjontegaard, G., Luthra, A.: Overview of the h.264/avc video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)CrossRefGoogle Scholar
  35. 35.
    Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T., Wedi, T.: Video coding with H.264/AVC: tools, performance, and complexity. IEEE Circuits Syst. Mag. 4(1), 7–28 (2004)Google Scholar
  36. 36.
    Sullivan, G., Wiegand, T.: Rate-distortion optimization for video compression. IEEE Signal Process. Mag. 15(6), 74–90 (1998)CrossRefGoogle Scholar
  37. 37.
    Schierl, T., Stockhammer, T., Wiegand, T.: Mobile video transmission using scalable video coding. IEEE Trans. Circuits Syst. Video Technol. 17(9), 1204–1217 (2007)CrossRefGoogle Scholar
  38. 38.
    Goyal, V.: Multiple description coding: compression meets the network. IEEE Signal Process. Mag. 18(5), 74–93 (2001)CrossRefGoogle Scholar
  39. 39.
    Wang, Y., Reibman, A., Lin, S.: Multiple description coding for video delivery. Proc. IEEE 93(1), 57–70 (2005)CrossRefGoogle Scholar
  40. 40.
    Chakareski, J., Han, S., Girod, B.: Layered coding vs. multiple descriptions for video streaming over multiple paths. Multimedia Syst. 10(4), 275–285 (2005)CrossRefGoogle Scholar
  41. 41.
    Singh, R., Ortega, A., Perret, L., Jiang, W.: Comparison of multiple description coding and layered coding based on network simulations. In: Image and Video Communications and Processing 2000. Volume 3974 of Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), pp. 929–939 (2000)Google Scholar
  42. 42.
    Wang, Y., Panwar, S., Lin, S., Mao, S.: Wireless video transport using path diversity: Multiple description vs. layered coding. In: 2002 International Conference on Image Processing, Proceedings of IEEE International Conference on Image Processing (ICIP), vol. 1, pp. 21–24 (2002)Google Scholar
  43. 43.
    Lee, Y., Kim, J., Altunbasak, Y., Mersereau, R.: Layered coded vs. multiple description coded video over error-prone networks. Signal Process. Image Commun. 18(5),337–356 (2003)Google Scholar
  44. 44.
    Yugang, Z., Wai-Yip, C.: Performance comparison of layered coding and multiple description coding in packet networks. IEEE Global Telecommunications Conference, 2005. GLOBECOM ’05, vol. 4, p. 2159 (2005)Google Scholar
  45. 45.
    Schwarz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding extension of the h.264/avc standard. IEEE Trans. Circuits Syst Video Technol. 17(9), 1103–1120 (2007)CrossRefGoogle Scholar
  46. 46.
    Mao, S., Lin, S., Panwar, S., Wang, Y., Celebi, E.: Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J. Sel. Areas Commun. 21(10), 1721–1737 (2003)CrossRefGoogle Scholar
  47. 47.
    Qin, M., Zimmermann, R.: Supporting guaranteed continuous media streaming in mobile ad-hoc networks with link availability prediction. In: MULTIMEDIA ’06: Proceedings of the 14th Annual ACM International Conference on Multimedia, New York, NY, USA, pp. 153–156. ACM (2006)Google Scholar
  48. 48.
    Kim, J., Hong, J.C.: Channel-adaptive multiple description coding for wireless video streaming. In: Proceedings of 16th International Conference on Computer Communications and Networks, 2007. ICCCN 2007, pp. 474–478 (2007)Google Scholar
  49. 49.
    Kim, J.: Multiple description coding for robust video transmission over wireless ad-hoc networks. In: Advances in Visual Computing. Volume 4292 of Lecture Notes in Computer Science, pp. 1–8. Springer, Heidelberg (2006)Google Scholar
  50. 50.
    Schierl, T., Ganger, K., Hellge, C., Wiegand, T., Stockhammer, T.: SVC-based multisource streaming for robust video transmission in mobile ad hoc networks. IEEE Wirel. Commun. 13(5), 96–103 (2006)CrossRefGoogle Scholar
  51. 51.
    Shokrollahi, A.: Raptor codes. IEEE/ACM Trans. Netw. 14(SI), 2551–2567 (2006)MathSciNetGoogle Scholar
  52. 52.
    Thomos, N., Frossard, P.: Raptor network video coding. In: MV ’07: Proceedings of the International Workshop on Workshop on Mobile Video, New York, NY, USA, pp. 19–24. ACM (2007)Google Scholar
  53. 53.
    Schierl, T., Johansen, S., Perkis, A., Wiegand, T.: Rateless scalable video coding for overlay multisource streaming in MANETs. J. Vis. Commun. Image Represent. 19(8), 500–507 (2008)CrossRefGoogle Scholar
  54. 54.
    Gabrielyan, E., Hersch, R.: Reliable multi-path routing schemes for real-time streaming. In: International conference on digital telecommunications, 2006. ICDT ’06, pp. 65–65 (2006)Google Scholar
  55. 55.
    Davidyuk, O., Riekki, J., Rautio, V.M., Sun, J.: Context-aware middleware for mobile multimedia applications. In: MUM ’04: Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia, New York, NY, USA, pp. 213–220. ACM (2004)Google Scholar
  56. 56.
    He, W., Nahrstedt, K., Liu, X.: End-to-end delay control of multimedia applications over multihop wireless links. ACM Trans. Multimedia Comput. Commun. Appl. 5(2), 1–20 (2008)CrossRefGoogle Scholar
  57. 57.
    Lau, W.H.O., Kumar, M., Venkatesh, S.: A cooperative cache architecture in support of caching multimedia objects in MANETs. In: WOWMOM ’02: Proceedings of the 5th ACM International Workshop on Wireless Mobile Multimedia, New York, NY, USA, pp. 56–63. ACM (2002)Google Scholar
  58. 58.
    Bestavros, A., Jin, S.: Osmosis: scalable delivery of real-time streaming media in ad-hoc overlay networks. In: Proceedings of ICDCS Workshops ’03, Providence, pp. 214–219 (2003)Google Scholar
  59. 59.
    Drugan, O.V., Plagemann, T., Munthe-Kaas, E.: Non-intrusive Clustering in Dynamic Networks. Technical report. Department of Informatics, University of Oslo, Norway (2009)Google Scholar
  60. 60.
    Bae, I.H., Lee, K.S.: Design and evaluation of a dynamic continuous media streaming supporting method on the basis of logical grid hierarchy for manets. In: 12th IEEE International Workshop on Future Trends of Distributed Computing Systems, 2008. FTDCS ’08, pp. 11–15 (2008)Google Scholar
  61. 61.
    Li, B., Wang, K.: NonStop: continuous multimedia streaming in wireless ad hoc networks with node mobility. IEEE J. Sel. Areas Commun. 21(10), 1627–1641 (2003)CrossRefGoogle Scholar
  62. 62.
    Mastronarde, N., Turaga, D.S., Schaar, M.V.D.: Collaborative resource exchanges for peer-to-peer video streaming over wireless mesh networks. IEEE J. Sel. Areas Commun. 25(1), 108–118 (2007)CrossRefGoogle Scholar
  63. 63.
    Qadri, N.N., Alhaisoni, M., Liotta, A.: Mesh based P2P streaming over manets. In: MoMM ’08: Proceedings of the 6th International Conference on Advances in Mobile Computing and Multimedia, New York, NY, USA, pp. 29–34. ACM (2008)Google Scholar
  64. 64.
    Zhao, W., Ammar, M., Zegura, E.: A message ferrying approach for data delivery in sparse mobile ad hoc networks. In: MobiHoc ’04: Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing, New York, NY, USA, pp. 187–198. ACM (2004)Google Scholar
  65. 65.
    Cabrero, S., Pãneda, X.G., Plagemann, T., Goebel, V.: Overlay solution for multimedia data over sparse MANETs. In: International Wireless Comunications and Mobile Computing Conference (IWCMC) (2009)Google Scholar
  66. 66.
    Guo, M., Ammar, M., Zegura, E.: V3: a vehicle-to-vehicle live video streaming architecture. In: Proceedings of the Third IEEE International Conference on Pervasive Computing and Communications, pp. 171–180 (2005)Google Scholar
  67. 67.
    Day, J., Zimmermann, H.: The OSI reference model. Proc. IEEE 71(12), 1334–1340 (1983)CrossRefGoogle Scholar
  68. 68.
    Postel, J.: Transmission control protocol. RFC 793 (1981)Google Scholar
  69. 69.
    Postel, J.: User datagram protocol. RFC 786 (1980)Google Scholar
  70. 70.
    Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: a transport protocol for real-time applications. RFC 1889 (1996)Google Scholar
  71. 71.
    Handley, M., Floyd, S., Padhye, J., Widmer, J.: Tcp friendly rate control (TFRC): protocol specification. RFC 3448 (2003)Google Scholar
  72. 72.
    Holland, G., Vaidya, N.: Analysis of TCP performance over mobile ad hoc networks. In: MobiCom ’99: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, New York, NY, USA, pp. 219–230. ACM (1999)Google Scholar
  73. 73.
    Zhao, Z., Long, S., Shu, Y.: Cross-layer adaptive rate control for video transport over wireless ad hoc networks. In: Canadian Conference on Electrical and Computer Engineering, 2006. CCECE ’06, pp. 1558–1561 (2006)Google Scholar
  74. 74.
    Navaratnam, P., Cruickshank, H., Tafazolli, R.: A link adaptive transport protocol for multimedia streaming applications in multi hop wireless networks. Mob. Netw. Appl. 13(3–4), 246–258 (2008)Google Scholar
  75. 75.
    Zhu, X., Girod, B.: Distributed rate allocation for video streaming over wireless networks with heterogeneous link speeds. In: IWCMC ’07: Proceedings of the 2007 International Conference on Wireless Communications and Mobile Computing, New York, NY, USA, pp. 296–301. ACM (2007)Google Scholar
  76. 76.
    Mao, S., Bushmitch, D., Narayanan, S., Panwar, S.: MRTP: a multiflow real-time transport protocol for ad hoc networks. IEEE Trans. Multimedia 8(2), 356–369 (2006)CrossRefGoogle Scholar
  77. 77.
    Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., Paxson, V.: Stream control transmission protocol. RFC 2960 (2000)Google Scholar
  78. 78.
    Mao, S., Hou, Y., Cheng, X., Sherali, H., Midkiff, S., Zhang, Y.Q.: On routing for multiple description video over wireless adhoc networks. IEEE Trans. Multimedia 8(5), 1063–1074 (2006)CrossRefGoogle Scholar
  79. 79.
    Rojviboonchai, K., Yang, F., Zhang, Q., Aida, H., Zhu, W.: AMTP: a multipath multimedia streaming protocol for mobile ad hoc networks. In: IEEE International Conference on Communications, 2005. ICC 2005, vol. 2, pp. 1246–1250 (2005)Google Scholar
  80. 80.
    Marfia, G., Lutterotti, P., Eidenbenz, S., Pau, G., Gerla, M.: FairCast: fair multi-media streaming in ad hoc networks through local congestion control. In: MSWiM ’08: Proceedings of the 11th International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, New York, NY, USA, pp. 2–9. ACM (2008)Google Scholar
  81. 81.
    Perkins, C.E., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In: SIGCOMM ’94: Proceedings of the Conference on Communications Architectures, Protocols and Applications, New York, NY, USA, pp. 234–244. ACM (1994)Google Scholar
  82. 82.
    Haas, Z.J., Pearlman, M.R.: The performance of query control schemes for the zone routing protocol. IEEE/ACM Trans. Netw. 9(4), 427–438 (2001)CrossRefGoogle Scholar
  83. 83.
    Royer, E., Toh, C.K.: A review of current routing protocols for ad hoc mobile wireless networks. IEEE Pers. Commun. 6(2), 46–55 (1999)CrossRefGoogle Scholar
  84. 84.
    Wang, Z., Crowcroft, J.: Quality-of-service routing for supporting multimedia applications. IEEE J Sel. Areas Commun. 14(7), 1228–1234 (1996)CrossRefGoogle Scholar
  85. 85.
    Crawley, E., Nair, R., Rajagopalan, B., Sandick, H.: A framework for QoS-based routing in the Internet. RFC 2386 (Informational) (1998)Google Scholar
  86. 86.
    Lin, C.R., Liu, J.S.: QoS routing in ad hoc wireless networks. IEEE J. Sel. Areas Commun. 17(8), 1426–1438 (1999)CrossRefGoogle Scholar
  87. 87.
    Villasenor-Gonzalez, L., Ge, Y., Lament, L.: HOLSR: a hierarchical proactive routing mechanism for mobile ad hoc networks. IEEE Commun. Mag. 43(7), 118–125 (2005)CrossRefGoogle Scholar
  88. 88.
    Arce, P., Guerri, J.C., Pajares, A., Láro, O.: Performance evaluation of video streaming over ad hoc networks using flat and hierarchical routing protocols. Mob. Netw. Appl. 13(3–4), 324–336 (2008)Google Scholar
  89. 89.
    Huang, Y.M., Hsieh, M.Y., Wang, M.S.: Reliable transmission of multimedia streaming using a connection prediction scheme in cluster-based ad hoc networks. Comput. Commun. 30(2), 440–452 (2007)CrossRefGoogle Scholar
  90. 90.
    Jiang, M., Li, J., Tay, Y.C.: Cluster based routing protocol functional specification. Internet Draft (1999)Google Scholar
  91. 91.
    Mueller, S., Tsang, R., Ghosal, D.: Multipath routing in mobile ad hoc networks: issues and challenges. In: Performance Tools and Applications to Networked Systems. Volume 2965/2004 of Performance Tools and Applications to Networked Systems, pp. 209–234. Springer, Heidelberg (2004)Google Scholar
  92. 92.
    Xu, T., Cai, Y.: Streaming in MANET: Proactive link protection and receiver-oriented adaptation. In: IEEE International Performance, Computing, and Communications Conference, 2007. IPCCC 2007, pp. 178–185 (2007) Google Scholar
  93. 93.
    Frias, V.C., Delgado, G.D., Igartua, M.A.: Multipath routing with layered coded video to provide QoS for video-streaming over manets. In: 14th IEEE International Conference on Networks, 2006. ICON ’06, vol. 1, pp. 1–6 (2006)Google Scholar
  94. 94.
    Wei, W., Zakhor, A.: Robust multipath source routing protocol (RMPSR) for video communication over wireless ad hoc networks. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME ’04), vol. 2, pp. 1379–1382 (2004)Google Scholar
  95. 95.
    Wei, W., Zakhor, A.: Multipath Video Communication in Wireless Ad Hoc Networks. VDM Verlag, Germany (2008)Google Scholar
  96. 96.
    Mao, S., Hou, Y., Sherali, H., Midkiff, S.: Multimedia-centric routing for multiple description video in wireless mesh networks. IEEE Netw. 22(1), 19–24 (2008)CrossRefGoogle Scholar
  97. 97.
    Setton, E., Zhu, X., Girod, B.: Congestion-optimized multi-path streaming of video over ad hoc wireless networks. In: IEEE International Conference on Multimedia and Expo 2004 (ICME 04), vol. 3, pp. 1619–1622 (2004)Google Scholar
  98. 98.
    Zhu, X., Setton, E., Girod, B.: Congestion–distortion optimized video transmission over ad hoc networks. EURASIP J. Signal Process. Image Commun. 20, 773–783 (2005)CrossRefGoogle Scholar
  99. 99.
    Nunome, T., Tasaka, S.: An audio-video multipath streaming scheme for ad hoc networks: the effect of node mobility. IEICE Trans. Commun. E89-B(3), 974–977 (2006)CrossRefGoogle Scholar
  100. 100.
    Vaidya, B., Ko, N.Y., Jarng, S.S., Han, S.: Investigating voice communication over multipath wireless mobile ad hoc network. In: ICUIMC ’08: Proceedings of the 2nd International Conference on Ubiquitous Information Management and Communication, New York, NY, USA, pp. 528–532. ACM (2008)Google Scholar
  101. 101.
    Xie, G., Swamy, M., Ahmad, M.: Joint optimal multipath routing and rate control for multidescription coded video streaming in ad hoc networks. IEEE Trans. Multimedia 10(8), 1687–1697 (2008)CrossRefGoogle Scholar
  102. 102.
    Chow, C.O., Ishii, H.: Enhancing real-time video streaming over mobile ad hoc networks using multipoint-to-point communication. Comput. Commun. 30(8), 1754–1764 (2007)CrossRefGoogle Scholar
  103. 103.
    Politis, I., Tsagkaropoulos, M., Dagiuklas, T., Kotsopoulos, S.: Power efficient video multipath transmission over wireless multimedia sensor networks. Mob. Netw. Appl. 13(3–4), 274–284 (2008)Google Scholar
  104. 104.
    Chen, M., Leung, V., Mao, S., Li, M.: Cross-layer and path priority scheduling based real-time video communications over wireless sensor networks. In: IEEE Vehicular Technology Conference, 2008. VTC Spring 2008, pp. 2873–2877 (2008) Google Scholar
  105. 105.
    de Morais Cordeiro, C., Gossain, H., Agrawal, D.: Multicast over wireless mobile ad hoc networks: present and future directions. IEEE Netw. 17(1), 52–59 (2003)CrossRefGoogle Scholar
  106. 106.
    Mao, S., Cheng, X., Hou, Y., Sherali, H.: Multiple description video multicast in wireless ad hoc networks. In: Proceedings of IEEE BROADNETS, pp. 671–680 (2004)Google Scholar
  107. 107.
    Wei, W., Zakhor, A.: Multiple tree video multicast over wireless ad hoc networks. IEEE Trans. Circuits Syst. Video Technol. 17(1), 2–15 (2007)CrossRefGoogle Scholar
  108. 108.
    IEEE 802.11-1999: Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications IEEE std 802.11™-2007 (revision of IEEE std 802.11-1999) (2007)Google Scholar
  109. 109.
    Andreopoulos, Y., Mastronarde, N., van der Schaar, M.: Cross-layer optimized video streaming over wireless multihop mesh networks. In: IEEE J. Sel. Areas Commun. 24(11), 2104–2115 (2006)CrossRefGoogle Scholar
  110. 110.
    Shiang, H.P., van der Schaar, M.: Multi-user video streaming over multi-hop wireless networks: a distributed, cross-layer approach based on priority queuing. IEEE J. Sel. Areas Commun. 25(4), 770–785 (2007)CrossRefGoogle Scholar
  111. 111.
    Shiang, H.P., van der Schaar, M.: Risk-aware scheduling for multi-user video streaming over wireless multi-hop networks. In: Visual Communications and Image Processing 2008, vol. 6822 (2008) 682204Google Scholar
  112. 112.
    Oh, B.J., Chen, C.W.: Performance evaluation of H.264 video over ad hoc networks based on dual mode IEEE 802.11B/G and EDCA MAC architecture. IEEE International Symposium on Circuits and Systems, 2008. ISCAS 2008, pp. 3510–3513 (2008)Google Scholar
  113. 113.
    Wu, D., Ci, S., Wang, H.: Cross-layer optimization for packetized video communications over wireless mesh networks. In: Proceedings of IEEE ICC 2008, pp. 1996–2000 (2008)Google Scholar
  114. 114.
    Setton, E., Yoo, T., Zhu, X., Goldsmith, A., Girod, B.: Cross-layer design of ad hoc networks for real-time video streaming. IEEE Wirel. Commun. 12(4), 59–65 (2005)CrossRefGoogle Scholar
  115. 115.
    Srivastava, V., Motani, M.: Cross-layer design: a survey and the road ahead. IEEE Commun. Mag. 43(12), 112–119 (2005)CrossRefGoogle Scholar
  116. 116.
    Choi, L.U., Kellerer, W., Steinbach, E.: On cross-layer design for streaming video delivery in multiuser wireless environments. EURASIP J. Wirel. Commun. Netw. 2006(2), 55–55 (2006)Google Scholar
  117. 117.
    Sarma, N., Nandi, S.: QoS support in mobile ad hoc networks. In: IFIP International Conference on Wireless and Optical Communications Networks, 2006, vol. 5, p. 5 (2006)Google Scholar
  118. 118.
    Khan, S., Duhovnikov, S., Steinbach, E., Sgroi, M., Kellerer, W.: Application-driven cross-layer optimization for mobile multimedia communication using a common application layer quality metric. In: IWCMC ’06: Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing, New York, NY, USA, pp. 213–218. ACM (2006)Google Scholar
  119. 119.
    Delgado, G., Frias, V., Igartua, M.: ViStA-XL: a cross-layer design for video-streaming over ad hoc networks. In: 3rd International Symposium on Wireless Communication Systems, 2006. ISWCS ’06, pp. 243–247 (2006)Google Scholar
  120. 120.
    Marina, M.K., Das, S.R.: Ad hoc on-demand multipath distance vector routing. SIGMOBILE Mob. Comput. Commun. Rev. 6(3), 92–93 (2002)CrossRefGoogle Scholar
  121. 121.
    Mao, S., Lin, S., Wang, Y., Panwar, S., Li, Y.: Multipath video transport over ad hoc networks. IEEE Wirel. Commun. 12(4), 42–49 (2005)CrossRefGoogle Scholar
  122. 122.
    Chen, M., Leung, V.C.M., Mao, S., Yuan, Y.: Directional geographical routing for real-time video communications in wireless sensor networks. Comput. Commun. 30(17), 3368–3383 (2007)CrossRefGoogle Scholar
  123. 123.
    Puzar, M., Plagemann, T.: Neman: a network emulator for mobile ad-hoc networks. In: Proceedings of the 8th International Conference on Telecommunications, 2005. ConTEL 2005, vol. 1, pp. 155–161, 15–17 (2005) Google Scholar
  124. 124.
    Kurkowski, S., Camp, T., Colagrosso, M.: Manet simulation studies: the incredibles. Mobile Comput. Commun. 1(2) (2005)Google Scholar
  125. 125.
    Gaertner, G., Cahill, V.: Understanding link quality in 802.11 mobile ad hoc networks. IEEE Internet Comput. 8(1), 55–60 (2004)Google Scholar
  126. 126.
    Video Traces Research Group. http://trace.eas.asu.edu
  127. 127.
    Nunome, T., Tasaka, S., Nakaoka, K.: Application-level and user-level QoS assessment of audio-video IP transmission over cross-layer designed wireless ad hoc networks. IEICE Trans. Commun. E91-B(10), 3205–3215 (2008)CrossRefGoogle Scholar
  128. 128.
    Telecommunication Standardization Sector (ITU-T): Recommendation G.107, the E-model, a computational model for use in transmission planning (2005)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Morten Lindeberg
    • 1
  • Stein Kristiansen
    • 1
  • Thomas Plagemann
    • 1
  • Vera Goebel
    • 1
  1. 1.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations