Multimedia Systems

, Volume 16, Issue 6, pp 381–397 | Cite as

Bandwidth-effective streaming of educational medical videos

Original Research Paper

Abstract

Real-time delivery of medical videos requires high level of quality of service that shows no tolerance to loss and delay. In this study, how content-adaptive streaming can aid to maintain high-quality streaming sessions is investigated. The proposed strategy allocates a specific amount of bandwidth to streaming sessions and takes advantage of the general structure of instructional medical videos to decrease bandwidth consumption below this limit. The main contribution of the proposed mechanism is that it eliminates the need for rate adaptation which is common in traditional streaming by employing a proper bandwidth management scheme that enables constant bandwidth consumption below the allocated capacity. A streaming system based on the proposed mechanism has been implemented and its performance has been tested via emulation. Experimental results indicate that content-adaptive streaming successfully eliminates the need of rate adaptation during the delivery of critical data and hence preserves viewers’ satisfaction.

Keywords

Video streaming Quality of service Congestion Telemedicine Medical education 

References

  1. 1.
    Liu, N., Bigham, J.: Utility maximization bandwidth adaptation for multi-class traffic QoS provisioning in wireless networks. In: Proceedings of Q2SWinet’05, pp. 136–143 (2005)Google Scholar
  2. 2.
    Tulu, B., Chatterjee, S.: Internet-based telemedicine: an empirical investigation of objective and subjective video quality. Decis. Supp. Syst. 45(4), 681–696 (2008)CrossRefGoogle Scholar
  3. 3.
    Prior, F.: Communication technology for telemedicine. In: Proceedings of National Forum’95, pp. 3–7 (1996)Google Scholar
  4. 4.
    Rosser, J., Herman, B., Ehrenwerth, C.: An overview of video streaming on the internet and its application to surgical education. Surg. Endosc. 15, 624–629 (2001)CrossRefGoogle Scholar
  5. 5.
    Eke, I., Kantarcı, A., Apaydın, F., Açık, Y.: Internet casts and their applications in telemedicine. Presented at Inet-tr’2003, Istanbul, Turkey (2003)Google Scholar
  6. 6.
    Kantarcı, A., Tunalı, T.: Design and implementation of a streaming system for MPEG-1 videos. Multimed. Tools. Appl. 23(3), 261–280 (2003)CrossRefGoogle Scholar
  7. 7.
    Wu, D., Hou, Y.T., Zhu, W., Zhang, Y.Q., Peha, J.M.: Streaming video over the internet approaches and directions. IEEE. Trans. Circuits. Syst. Video. Techn. 11(3), 282–300 (2001)CrossRefGoogle Scholar
  8. 8.
    Halsall, F.: Multimedia Communication: Applications, Networks, Protocols and Standards. Addison Wesley, USA (2001)Google Scholar
  9. 9.
    Sullivan, G.J., Wiegand, T.: Video Compression—from concepts to the H.264/AVC standard. In: Proceedings of IEEE’2005, 93(1):1–13 (2005)Google Scholar
  10. 10.
    Cavallara, A., Steiger, O., Ebrahimi, T.: Semantic video analysis for adaptive content delivery and automatic description. IEEE. Trans. Circuits. Syst. Video. Techn. 15(10), 1200–1209 (2005)CrossRefGoogle Scholar
  11. 11.
    Wang, Y., Liu, Z., Huang, H.: Multimedia content analysis using audio and visual information. IEEE. Signal. Process. Mag. 17(6), 12–36 (2000)CrossRefGoogle Scholar
  12. 12.
    Filali, F., Dabbous, F.: Fair bandwidth sharing between unicast and multicast flows in best effort networks. Comput. Commun. 24(4), 330–344 (2004)CrossRefGoogle Scholar
  13. 13.
    Saffre, F., Hoile, C., Shackleton, M.: Bandwidth management for the people. BT. Techn. J. 23(2), 232–239 (2005)CrossRefGoogle Scholar
  14. 14.
    Xie, J., Jiang, S., Jiang, Y.: A dynamic bandwidth allocation scheme for differentiated services in EPONs. IEEE. Comm. Mag. 42(8), 32–39 (2004)CrossRefGoogle Scholar
  15. 15.
    Lam, L.S., Lee, J.Y.B., Liew, S.C., Wang. E.: A transparent rate adaptation algorithm for streaming over the Internet. In: Proceedings of Aina’2004, pp. 346–351 (2004)Google Scholar
  16. 16.
    Cheng, S.F., Vetro, A.: Video adaptation: concepts, technologies and open issues. In: Proceedings of IEEE, 93(1):148–158 (2005)Google Scholar
  17. 17.
    Ozçelebi, T., Civanlar, MR., Tekalp, A.M.: Minimum delay content adaptive video streaming over variable bitrate channels with a novel stream switching solution. In: Proceedings of ICIP2005, pp. 209–212 (2005)Google Scholar
  18. 18.
    Chang, S., Zhong, D., Kumar, R.: Real-time content based adaptive streaming of sports videos. In: Proceedings of IEEE CBAIVL’2001, pp. 139–146 (2001)Google Scholar
  19. 19.
    Liu, T., Choudary, C.: Content adaptive wireless streaming of instructional videos. Multimed. Tools. Appl. 28, 157–171 (2006)CrossRefGoogle Scholar
  20. 20.
    Schafer, R., Schwarz, H., Marpe, D., Schierl, T., Wiegand, T.: MCTF and scalability extension of H.264/AVC and its application to video transmission, storage and surveillance. In: Proceedings of VCIP 2005, Beijing, China, 2005Google Scholar
  21. 21.
    Schwarz, H., Marpe, D., Schierl, T., Wiegand, T.: Combined scalability support for scalability extension of H.264/AVC. In: Proceedings of IEEE Expo ICME 2005, Amsterdam, The Netherlands (2005)Google Scholar
  22. 22.
    Sun, X., Wu, F., Li, S., Gao, W., Zhang, Y.: Seamless switching of scalable video bitstreams for efficient streaming. IEEE. Trans. Multimed. 6(2), 291–303 (2004)CrossRefGoogle Scholar
  23. 23.
    Ferman, A.M., Tekalp, A.M.: Efficient filtering and clustering methods for temporal video segmentation. J. Vis. Commun. Image. Rep. 9(4), 336–351 (1998)CrossRefGoogle Scholar
  24. 24.
    Joyce, R.A., Liu, B.: Temporal segmentation of video using frame and histogram space. IEEE. Trans. Multimed. 8(1), 130–140 (2006)CrossRefGoogle Scholar
  25. 25.
    Lienhart, R.: Comparison of automatic shot boundary detection algorithms. In: Proceedings of SPIE Conference on Storage and Retrieval for Image and Video Databases VII, pp. 290–301 (1999)Google Scholar
  26. 26.
    Shih, TK., Huang, J., Wang, C., Hung, JC., Kao, C.: An intelligent content-based image retrieval system based on color, shape and spatial relations. In: Proceedings of Natl. Sci. Counc, 25(4):232–243 (2001)Google Scholar
  27. 27.
    Ekin, A., Tekalp, A.M., Mehrota, R.: Automatic soccer video analysis and summarization. IEEE. Trans. Image. Proc. 12(7), 796–807 (2003)CrossRefGoogle Scholar
  28. 28.
    Phung, D.Q., Venkatewsh, S., Dorai, C.: High level image segmentation of instructional videos based on content density. In: Proceedings of ACM Multimedia’02, pp. 295–298 (2002)Google Scholar
  29. 29.
    Li, Y., Dorai, C.: Analysing discussion scene contents in instructional videos. In: Proceedings of Multimedia’04, pp. 264–267 (2004)Google Scholar
  30. 30.
    Cao, Y., Li, D., Tavanapang, W., Oh, J., Wong, J., Groen, PC.: Parsing and browsing tools for colonoscopy videos. In: Proceedings of. Intl Multimedia Conf., pp. 844–851 (2004)Google Scholar
  31. 31.
    Karkaris, S.A., Lakavadis, D.K., Moroulis, D.E., Karras, D.A., Tzirvas, M.: Computer aided tumor detection in endoscopic video using color wavelet features. IEEE. Trans. Info. Techn. Biomed. 7(3), 141–152 (2003)CrossRefGoogle Scholar
  32. 32.
    Gargi, U., Kasturi, R., Strayer, S.H.: Performance characterization of video-shot-change detection methods. IEEE. Trans. Circuits. Syst. Video. Techn. 10, 1–13 (2000)CrossRefGoogle Scholar
  33. 33.
    Schwarz, H., Marpe, D., Wiegand, T.: Analysis of hierarchical B pictures and MCTF. In: Proceedings of ICIP’2006, Toronto, Canada (2006)Google Scholar
  34. 34.
    Ozcelebi, T., De Vito, F., Tekalp, A.M., Civanlar, M.R., Sunay, O.M., De Martin, J.: An analysis of constant bitrate and constant PSNR video encoding for wireless networks. In: Proceedings of IEEE ICC 2006, pp. 5301–6306 (2006)Google Scholar
  35. 35.
    Chondros, P., Prayati, A., Koulamas, C., Papadopoulos, G.: 802.11 Performance evaluation for multimedia streaming. In: IEEE 5th International Symposium on Communication Systems, Networks and Digital Signal Processing CNDSP06 2006Google Scholar
  36. 36.
    Schulzrinne, H., Cosner, S., Frederic, R., Jacobson, V.: RFC3550: RTP: A Transport Protocol for Real-time Applications. Internet draft, draft-ietf-rtp-new (2003)Google Scholar
  37. 37.
    Gallmeister, B.: POSIX.4: Programmers Guide Programming for the Real World. O’Reilley, USA (1995)Google Scholar
  38. 38.
    Kantarcı, A.: Implementation of a video streaming system using scalable extension of H.264. In: Proceedings of ISCIS 2005, 3733:728–738 (2005)Google Scholar
  39. 39.
    Shunra ve SMBTM software. http://www.shunra.com (2007). Accessed 15 Dec 2007
  40. 40.
    Sühring K (2005) JM10.2 reference software. http://iphome.hhi.de/suehring/tml/index.htm (2005). Accessed 18 Nov 2005
  41. 41.
    Puri, A., Chen, X., Luthra, A.: Video coding using the H.264/MPEG-4 AVC compression standard. Signal. Proc. Image. Comm. 19, 793–849 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Computer Engineering DepartmentEge UniversityIzmirTurkey

Personalised recommendations