Advertisement

Multimedia Systems

, Volume 16, Issue 2, pp 139–149 | Cite as

Dyadic spatial resolution reduction transcoding for H.264/AVC

  • Jan De Cock
  • Stijn Notebaert
  • Kenneth Vermeirsch
  • Peter Lambert
  • Rik Van de Walle
Original Research Paper

Abstract

In this paper, we examine spatial resolution downscaling transcoding for H.264/AVC video coding. A number of advanced coding tools limit the applicability of techniques, which were developed for previous video coding standards. We present a spatial resolution reduction transcoding architecture for H.264/AVC, which extends open-loop transcoding with a low-complexity compensation technique in the reduced-resolution domain. The proposed architecture tackles the problems in H.264/AVC and avoids visual artifacts in the transcoded sequence, while keeping complexity significantly lower than more traditional cascaded decoder–encoder architectures. The refinement step of the proposed architecture can be used to further improve rate-distortion performance, at the cost of additional complexity. In this way, a dynamic-complexity transcoder is rendered possible. We present a thorough investigation of the problems related to motion and residual data mapping, leading to a transcoding solution resulting in fully compliant reduced-size H.264/AVC bitstreams.

Keywords

Video adaptation Transcoding Spatial resolution reduction H.264/AVC 

Notes

Acknowledgments

The research activities that have been described in this paper were funded by Ghent University, the Interdisciplinary Institute for Broadband Technology (IBBT), the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT-Flanders), the Fund for Scientific Research-Flanders (FWO-Flanders), and the European Union.

References

  1. 1.
    Chen, C., Wu, P.-H., Chen, H.: Transform-domain intra prediction for H.264. In: Proceedings of the 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, May 2005Google Scholar
  2. 2.
    De Cock, J., Notebaert, S., Van de Walle, R.: A novel hybrid requantization transcoding scheme for H.264/AVC. In: Proceedings of International Symposium Signal Processing and Application (ISSPA), February 2007Google Scholar
  3. 3.
    De Cock, J., Notebaert, S., Vermeirsch, K., Lambert, P., Van de Walle, R.: Efficient spatial resolution reduction transcoding for H.264/AVC. In: Proceedings of IEEE International Conference on Image Processing (ICIP), October 2008Google Scholar
  4. 4.
    Malvar, H., Hallapuro, A., Karczewicz, M., Kerofsky, L.: Low-complexity transform and quantization in H.264/AVC. IEEE Transact. Circuits Syst. Video Technol. 13(7), 598–603 (2003)CrossRefGoogle Scholar
  5. 5.
    Mokry, R., Anastassiou, D.: Minimal error drift in frequency scalability for motion-compensated DCT coding. IEEE Trans. Circuits Syst. Video Technol. 4(4), 392–406 (1994)CrossRefGoogle Scholar
  6. 6.
    Patil, V., Kumar, R.: A fast arbitrary factor H.264/AVC video re-sizing algorithm. In Proceedings of IEEE International Conference on Image Processing (ICIP), September 2007Google Scholar
  7. 7.
    Segall, A.C., Sullivan, G.J.: Spatial scalability within the H.264/AVC scalable video coding extension. IEEE Trans. Circuits Syst. Video Technol. 17(9), 1121–1135 (2007)CrossRefGoogle Scholar
  8. 8.
    Shen, B.: Submacroblock motion compensation for fast down-scale transcoding of compressed video. IEEE Trans. Circuits Syst. Video Technol. 15(10), 1291–1302 (2005)CrossRefGoogle Scholar
  9. 9.
    Shen, H., Sun, X., Wu, F., Li, H., Li, S.: A fast downsizing video transcoder for H.264/AVC with rate-distortion optimal mode decision. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME), pp 2017–2020, July 2006Google Scholar
  10. 10.
    Sun, S., Reichel, J.: AHG report on Spatial Scalability Resampling. Joint Video Team, Doc. JVT-R006, Bangkok, Thailand, January 2006Google Scholar
  11. 11.
    Tan, Y.-P., Sun, H.: Fast motion re-estimation for arbitrary downsizing video transcoding using H.264/AVC standard. IEEE Trans. Consum. Electron. 50(3), 887–894 (2004)CrossRefGoogle Scholar
  12. 12.
    Vetro, A., Christopoulos, C., Sun, H.: Video transcoding architectures and techniques: an overview. IEEE Signal Process. Mag. 20(2):18–29 (2003)Google Scholar
  13. 13.
    Vetro, A., Sun, H., DaGraca, P., Poon, T.: Minimum drift architectures for 3-layer scalable DTV decoding. IEEE Trans. Consum. Electron. 44(3), 527–536 (1998)CrossRefGoogle Scholar
  14. 14.
    Vetro, A., Sun, H.: Frequency domain down-conversion of HDTV using an optimal motion compensation scheme. Int. J Imaging Syst. Technol. 9(4):274–282 (1998)Google Scholar
  15. 15.
    Wiegand, T., Girod, B.: Lagrange multiplier selection in hybrid video coder control. In: Proceedings of IEEE International Conferece on Image Process (ICIP), September 2001Google Scholar
  16. 16.
    Wiegand, T., Schwarz, H., Joch, A., Kossentini, F., Sullivan, G.J.: Rate-constrained coder control and comparison of video coding standards. IEEE Trans. Circuits Syst. Video Technol. 13(7), 688–703 (2003)CrossRefGoogle Scholar
  17. 17.
    Yin, P., Vetro, A., Liu, B., Sun, H.: Drift compensation for reduced spatial resolution transcoding. IEEE Trans. Circuits Syst. Video Technol. 12(1), 1009–1020 (2002)CrossRefGoogle Scholar
  18. 18.
    Zhang, P., Lu, Y., Huang, Q., Gao, W.: Mode mapping method for H.264/AVC spatial downscaling transcoding. In: Proceedings of IEEE International Conference on Image Processing (ICIP), October 2004Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jan De Cock
    • 1
  • Stijn Notebaert
    • 1
  • Kenneth Vermeirsch
    • 1
  • Peter Lambert
    • 1
  • Rik Van de Walle
    • 1
  1. 1.Multimedia Lab, Department of Electronics and Information SystemsGhent University - IBBTLedeberg-GhentBelgium

Personalised recommendations