Advertisement

Multimedia Systems

, Volume 12, Issue 6, pp 461–478 | Cite as

Elastic time computation in QoS-driven hypermedia presentations

  • Bruno Bachelet
  • Philippe Mahey
  • Rogério Rodrigues
  • Luiz Fernando SoaresEmail author
Regular Paper

Abstract

The development of hypermedia/multimedia systems requires the implementation of an element, usually known as formatter, which is in charge of receiving the specification of a document and controlling its presentation. Adjustments over the duration of media objects is one of the most important adaptation techniques that hypermedia formatters should implement in order to maintain document spatio-temporal relationships. Elastic time computation accomplishes this goal by stretching or shrinking the ideal duration of media objects. This paper presents new elastic time algorithms for adjusting hypermedia document presentations. The algorithms explore the flexibility offered by some hypermedia models in the definition of media-object durations, choosing objects to be stretched or shrunk in order to obtain the best possible quality of presentation. Our proposals are based on the “out-of-kilter” method for minimum-cost flow problems on temporal graphs. An aggregation procedure enhances the basic algorithm offering more flexibility in modeling real-life situations in comparison with other previous work based on linear programming.

Keywords

Head Node Presentation Event Media Object Multimedia Document Convex Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja R.K., Hochbaum D.S., Orlin J.B. (1999) Solving the convex cost integer dual network flow problem. Lect. Notes Comput. Sci. 1610, 31–44MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ahuja R.K., Magnanti T.L., Orlin J.B. (1993) Network Flows. Prentice Hall, Englewood cliffsGoogle Scholar
  3. 3.
    Allen J.F. (1983) Maintaining knowlegde about temporal intervals. Commun. ACM 26(11): 832–843zbMATHCrossRefGoogle Scholar
  4. 4.
    Aly S., Youssef A. (2002) Synchronization-sensitive frame estimation: video quality enhancement. Multimedia Tools Appl. 17, 233–235CrossRefGoogle Scholar
  5. 5.
    Bachelet B., Mahey P. (2003) Minimum convex-cost tension problems on series-parallel graphs. RAIRO Oper. Res. 37, 221–234zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bachelet B., Mahey P. (2004) Minimum convex piecewise linear cost tension problem on quasi series-parallel graphs. 4OR, Q J. Belg. French Ital. Oper. Res. Soc. 2, 275–291CrossRefMathSciNetGoogle Scholar
  7. 7.
    Bachelet B., Mahey P., Rodrigues R.F., Soares L.F.G.: Elastic time computation in QoS-driven hypermedia presentations. Research Report RR-04–16, LIMOS, Blaise-Pascal University, Clermont-Ferrand, France (2004) Available in http://www.isima.fr/limos/publi/paper/2004/RR0416.pdf.Google Scholar
  8. 8.
    Boll S., Klas W., Wandel J.: A cross-media adaptation strategy for multimedia presentation. ACM Multimedia, pp. 37–46 (1999)Google Scholar
  9. 9.
    Buchanan M.C., Zellweger P.T. (1993) Automatically generating consistent schedules for multimedia documents. ACM Multimedia Syst. J. 1(2): 55–67CrossRefGoogle Scholar
  10. 10.
    Bulterman D.C.A., Hardman L., Jansen J., Mullender K.S., Rutledge L.: GRiNS: a graphical interface for creating and playing SMIL documents. In: WWW7 Conference, Computer Networks and ISDN Systems, vol. 30(1–7), pp. 519–529, Brisbane, Australia (1998)Google Scholar
  11. 11.
    Dey A.K., Salber D., Abowd G.D. (2001) A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum. Comput. Interact. (HCI) J. Spec. Issue Context Aware Comput. 16(2–4): 97–166Google Scholar
  12. 12.
    Duda A., Keramane C.: Structured temporal composition of multimedia data. In: Proceedings of the IEEE International Workshop on Multimedia Database Management Systems, Blue Mountain Lake (1995)Google Scholar
  13. 13.
    Fulkerson D.R. (1961) An out-of-kilter method for minimal cost flow problems. SIAM J. Appl. Math. 9, 18–27zbMATHCrossRefGoogle Scholar
  14. 14.
    Golubchik L., Lui J., Muntz R.: Reducing I/O demand in video-on-demand storage servers. In: ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems (1995)Google Scholar
  15. 15.
    ISO/IEC—International Organization for Standardization: “14496-1:2001, Coding of Audio-Visual Objects – Part 1: Systems”, ISO Standard, 2nd edn (2001)Google Scholar
  16. 16.
    Jeong T., Ham J., Kim S.: A Pre-scheduling Mechanism for Multimedia Presentation Synchronization. In: IEEE International Conference on Multimedia Computing and Systems, Ottawa, pp. 379–386 (1997)Google Scholar
  17. 17.
    Kim M., Song J.: Multimedia documents with elastic time. In: Proceedings of ACM Multimedia’95, São Francisco, (1995)Google Scholar
  18. 18.
    Layaïda N., Sabry-Ismail L., Roisin C (2002). Dealing with uncertain durations in synchronized multimedia presentations. Multimedia Tools Appl. J. 18(3): 213–231CrossRefGoogle Scholar
  19. 19.
    Little T., Ghafoor A. (1990) Synchronization and storage models for multimedia objects. IEEE J. Selected Areas of Commun. 8(3): 413–427CrossRefGoogle Scholar
  20. 20.
    Medina M.T., Ribeiro C.C., Soares L.F.G. (2002) Automatic scheduling of hypermedia documents with elastic times. Parallel Process. Lett. 14, 45–59CrossRefMathSciNetGoogle Scholar
  21. 21.
    Muchaluat-Saade D.C., Soares L.F.G. (2002) XConnector & XTemplate: improving the expressiveness and reuse in Web authoring languages. New Rev. Hypermedia Multimedia J. 8, 139–169Google Scholar
  22. 22.
    Pérez-Luque M.J., Little T.D.C. (1996)A temporal reference framework for multimedia synchronization. IEEE J. Selected Areas Commun. Spec. Issue Synchron. Issues Multimedia Commun. 14(1): 36–51Google Scholar
  23. 23.
    Rockafellar R.T. (1984) Network Flows and Monotropic Optimization. Wiley, New YorkzbMATHGoogle Scholar
  24. 24.
    Rodrigues R.F., Lucena-Rodrigues P.S., Feijó, B., Velho L., Soares L.F.G.: Cross-media and elastic time adaptive presentations: the integration of a talking head tool with a hypermedia formatter. In: Adaptive Hypermedia and Adaptive Web-Based Systems, Lecture Notes in Computer Science (LNCS 3137), Eindhoven, pp. 215–224 (2004)Google Scholar
  25. 25.
    Rodrigues R.F., Soares L.F.G.: Inter and intra media-object QoS provisioning in adaptive formatters. In: ACM Symposium on Document Engineering, Grenoble, France (2003)Google Scholar
  26. 26.
    van Rossum G., Jansen J., Mullender K.S., Bulterman D.: CMIFed: a presentation environment for portable hypermedia documents. ACM Multimedia (1993)Google Scholar
  27. 27.
    Soares L.F.G., Rodrigues R.F., Muchaluat-Saade D.C. (2000) Modeling, Authoring and Formatting Hypermedia Documents in the hyperProp system. ACM Multimedia Sys. J. 8(2): 118–134zbMATHCrossRefGoogle Scholar
  28. 28.
    World-Wide Web Consortium (W3C): Synchronized Multimedia Integration Language (SMIL 2.0) Specification. W3C Recommendation, Available in http://www.w3.org/TR/smil20. (2001)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bruno Bachelet
    • 1
  • Philippe Mahey
    • 1
  • Rogério Rodrigues
    • 2
  • Luiz Fernando Soares
    • 2
    Email author
  1. 1.LIMOS, CNRS, ISIMA Université Blaise PascalClermont-Ferrendcedex1France
  2. 2.Departamento de InformáticaPUC-RioRio de JaneiroBrazil

Personalised recommendations