Multimedia Systems

, Volume 12, Issue 1, pp 45–54

View-invariant motion trajectory-based activity classification and recognition

  • Faisal I. Bashir
  • Ashfaq A. Khokhar
  • Dan Schonfeld
Regular Paperss

Abstract

Motion trajectories provide rich spatio-temporal information about an object's activity. The trajectory information can be obtained using a tracking algorithm on data streams available from a range of devices including motion sensors, video cameras, haptic devices, etc. Developing view-invariant activity recognition algorithms based on this high dimensional cue is an extremely challenging task. This paper presents efficient activity recognition algorithms using novel view-invariant representation of trajectories. Towards this end, we derive two Affine-invariant representations for motion trajectories based on curvature scale space (CSS) and centroid distance function (CDF). The properties of these schemes facilitate the design of efficient recognition algorithms based on hidden Markov models (HMMs). In the CSS-based representation, maxima of curvature zero crossings at increasing levels of smoothness are extracted to mark the location and extent of concavities in the curvature. The sequences of these CSS maxima are then modeled by continuous density (HMMs). For the case of CDF, we first segment the trajectory into subtrajectories using CDF-based representation. These subtrajectories are then represented by their Principal Component Analysis (PCA) coefficients. The sequences of these PCA coefficients from subtrajectories are then modeled by continuous density hidden Markov models (HMMs). Different classes of object motions are modeled by one Continuous HMM per class where state PDFs are represented by GMMs. Experiments using a database of around 1750 complex trajectories (obtained from UCI-KDD data archives) subdivided into five different classes are reported.

Keywords

Affine-invariant trajectory descriptors Trajectory modeling Activity recognition Hidden Markov models Centroid distance function Curvature scale space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bashir, F., Khanvilkar, S., Schonfeld, D., Khokhar, A.: Multimedia systems: content-based indexing and retrieval. In: Chen, W.K. (ed.) The Electrical Engineering Handbook, Sect. 4, Chapter 6. Academic Press (2004)Google Scholar
  2. 2.
    Bashir, F., Khokhar, A., Schonfeld, D.: Segmented trajectory based indexing and retrieval of video data. In: International Conference on Image Processing. Barcelona, Spain (2003)Google Scholar
  3. 3.
    Bashir, F., Khokhar, A., Schonfeld, D.: A hybrid system for affine-invariant trajectory retrieval. ACM SIGMM Multimedia Information Retrieval Workshop, New York, NY (2004)Google Scholar
  4. 4.
    Bashir, F., Khokhar, A.: Curvature scale space based affine-invariant trajectory retrieval. In: IEEE International Multitopic Conference, INMIC 2004. Lahore, Pakistan (2004)Google Scholar
  5. 5.
    Bashir, F., Khokhar, A., Schonfeld, D.: Automatic object trajectory-based motion recognition using gaussian mixture models. In: IEEE International Conference on Multimedia & Expo (ICME 2005). Amsterdam, the Netherlands (2005)Google Scholar
  6. 6.
    Bashir, F., Qu, W., Khokhar, A., Schonfeld, D.: HMM-based motion recognition system using segmented PCA. In: IEEE International Conference on Image Processing (ICIP 2005). Genoa, Italy (2005)Google Scholar
  7. 7.
    Brand, M., Oliver, N., Pentland, A.: Coupled hidden markov models for complex action recognition. In: Proceedings Conference on Computer Vision and Pattern Recognition, p. 994 (1997)Google Scholar
  8. 8.
    Buzan, D., Sclaroff, S., Kollios, G.: Extraction and clustering of motion trajectories in video. In: International Conference on Pattern Recognition (2004)Google Scholar
  9. 9.
    Caelli, T., McCabe, A., Briscoe, G.: Shape tracking and production using hidden markov models. Int. J. Pattern Recognit. Artificial Intell. 15(1), 197–221 (2001)CrossRefGoogle Scholar
  10. 10.
    Chang, S.F., Chen, W., Meng, H.J., Sundaram, H., Zhong, D.: A fully automated content-based video search engine supporting spatiotemporal queries. IEEE Trans. Circ. Sys. Video Techn. 8(5) (1998)Google Scholar
  11. 11.
    Chen, L., Ozsu, M.T., Oria, V.: Symbolic representation and retrieval of moving object trajectories. ACM SIGMM Multimedia Information Retrieval Workshop. New York (2004)Google Scholar
  12. 12.
    Chen, T., Huang, C., Chang, C., Wang, J.: On the Use of Gaussian Mixture Model for Speaker Variability Analysis. ICSLP. Denver, Colorado (2002)Google Scholar
  13. 13.
    Chen, W., Chang, S.F.: Motion Trajectory Matching of Video Objects. SPIE. San Jose, CA (2000)Google Scholar
  14. 14.
    Cheung, S., Zakhor, A.: Fast similarity search on video sequences. In: Proceedings IEEE International Conference on Image Processing (2003)Google Scholar
  15. 15.
    Dagtas, S., Al-Khatib, W., Ghafoor, A., Kashyap, R.: Models for motion-based video indexing and retrieval. IEEE Trans. Image Process. 9(1), 88–101 (2000)CrossRefGoogle Scholar
  16. 16.
    Dimitrova, N., Golshani, F.: Motion recovery for video content classification. ACM Trans. Inf. Syst. 13(4), 408–439Google Scholar
  17. 17.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)Google Scholar
  18. 18.
    Hettich, S., Bay, S.D.: The UCI KDD Archive [http://kdd.ics.uci.edu]. University of California, Department of Information and Computer Science, Irvine, California (1999)
  19. 19.
    Hongeng, S., Nevatia, R., Bremond, F.: Video-based event recognition: Activity representation and probabilistic recognition methods. Comput. Vis. Image Understanding 96, 129–162 (2004)CrossRefGoogle Scholar
  20. 20.
    Intille, S.S., Bobick, A.F.: Recognizing planned, multiperson action. Comput. Vis. Image Understanding 81, 414–445 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Isard, M., Blake, A.: A Mixed-State CONDENSATION tracker with automatic model-switching. In: Proceedings of the International Conference on Computer Vision, pp. 107–112 (1998)Google Scholar
  22. 22.
    Ivanov, Y.A., Bobick, A.F.: Recognition of visual activities and interactions by stochastic parsing. IEEE Trans. Pattern Anal. Machine Intell. 22(8), 852–872 (2000)CrossRefGoogle Scholar
  23. 23.
    Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201–211 (1973)Google Scholar
  24. 24.
    Jolliffe, I.T.: Principal Component Analysis. Springer-Verlag, New York (1986)Google Scholar
  25. 25.
    Katz, B., Lin, J., Stauffer, C., Grimson, E.: Answering questions about moving objects in surveillance videos. In: Proceedings of AAAI Spring Symposium on New Directions in Question Answering (2003)Google Scholar
  26. 26.
    Moghaddam, B., Wahid, W., Pentland, A.: Beyond EigenFaces: probabilistic matching for face recognition. In: International Conference on Automatic Face and Gesture Recognition. Nara, Japan (1998)Google Scholar
  27. 27.
    Mokhtarian, F., Abbasi, S.: Retrieval of similar shapes under affine transformation. In: Proceedings of the International Conference on Visual Information Systems. Amsterdam, The Netherlands, pp. 566–574 (1999)Google Scholar
  28. 28.
    Mokhtarian, F., Bober, M.: Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization. Kluwer Academic Publishers, Netherlands (2003)MATHGoogle Scholar
  29. 29.
    Naphade, M., Kozintsev, I., Huang, T.: Factor graph framework for semantic video indexing. IEEE Trans. Circuits Syst. Video Technol. 12(1) (2002)Google Scholar
  30. 30.
    Oliver, N.M., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal Machine Intell. 22(8), 831–843Google Scholar
  31. 31.
    Pentland, A., Sclaroff, S.: Modal matching for correspondence and recognition. IEEE Trans. Pattern Anal Machine Intell. 17(6), 545–561 (1995)CrossRefGoogle Scholar
  32. 32.
    Porikli, F.M.: Trajectory distance metric using hidden markov model based representation. In: Sixth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, PETS (2004)Google Scholar
  33. 33.
    Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech recognition. In: Proceedings of the IEEE, vol. 77, pp. 257–286 (1989)Google Scholar
  34. 34.
    Rangarajan, K., Allen, W., Shah, M.: Matching motion trajectories using scale-space. Pattern Recognit. 26(4), 595–610 (1993)CrossRefGoogle Scholar
  35. 35.
    Rao, C., Yilmaz, A., Shah, M.: View-invariant representation and recognition of actions. Int. J. Comput. Vis. 50(2), 203–226 (2002)CrossRefMATHGoogle Scholar
  36. 36.
    Rea, N., Dahyot, R., Kokaram, A.: Semantic event detection in sports through motion understanding. In: Proceedings of Conference on Image and Video Retrieval. Dublin, Ireland (2004)Google Scholar
  37. 37.
    Sahouria, E., Zakhor, A.: A Trajectory based video indexing system for street surveillance. In: IEEE International Conference on Image Processing (1999)Google Scholar
  38. 38.
    Schonfeld, D., Lelescu, D.: VORTEX: Video retrieval and tracking from compressed multimedia databases—multiple object tracking from MPEG-2 bitstream (Invited Paper). J. Vis. Commun. Image Representation 11, 154–182 (2000)CrossRefGoogle Scholar
  39. 39.
    Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the International Conference on Data Engineering, p. 673 (2002)Google Scholar
  40. 40.
    Wilson, A.A., Bobick, A.F.: Hidden Markov Models for modelling and recognizing gesture under variation. Hidden Markov Models: Appl. Comput. Vis. pp. 123–160 (2001)Google Scholar
  41. 41.
    Xie, L., Chang, S.F., Divakaran, A., Sun, H.: Structure analysis of soccer video with Hidden Markov Models. In: IEEE International Conference on Acoustic, Speech and Signal Processing. Orlando, FL (2002)Google Scholar
  42. 42.
    Zhang, D.S.: Image retrieval based on shape. Ph.D Thesis, Monash University, Australia (2003)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Faisal I. Bashir
    • 1
  • Ashfaq A. Khokhar
    • 1
  • Dan Schonfeld
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations