Advertisement

Multimedia Systems

, Volume 11, Issue 2, pp 143–158 | Cite as

Complementing zero-knowledge watermark detection: Proving properties of embedded information without revealing it

  • Andr#X00E9; AdelsbachEmail author
  • Markus Rohe
  • Ahmad-Reza Sadeghi
Regular Paper

Abstract

Zero-knowledge Watermark Detection (ZKWMD) is a promising and powerful means to improve the security of digital watermarking schemes in the context of various copyright-protection applications: in contrast to standard watermarking schemes, ZKWMD allows a proving party to prove to untrusted parties the presence of hidden information (embedded in digital data) without requiring to disclose this information or any other secrets necessary to detect its presence. However, typical applications presume the embedded information to have certain properties such as to be drawn from a specific probability distribution, and/or to have a specific form to counter ambiguity attacks. Hence, additional verifications must be performed that are more involved since the input to a ZKWMD protocol is cryptographically concealed.

We present concrete and practical protocols to securely perform these verifications as complementary protocols to ZKWMD. In this context we consider two different approaches whose deployment depends on the underlying applications: the first one allows to securely prove that the concealed information (watermark) suffices certain desired properties, whereas the second approach allows both parties to jointly, securely and verifiably generate this information with the desired properties.

Keywords

Zero-knowledge protocols Statistical tests on committed numbers Interactive generation of commitments on Gaussian distributed samples Zero-knowledge watermark detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Information Hiding—3rd International Workshop, IH'99, Lecture Notes in Computer Science, vol. 1768. Springer, Berlin Heidelberg New York (2000)Google Scholar
  2. 2.
    Adelsbach, A., Katzenbeisser, S., Sadeghi, A.-R.: Watermark detection with zero-knowledge disclosure. {{ACM} Multimedia Syst. J.} 9(3), 266–278 (2003). Special Issue on Multimedia SecurityGoogle Scholar
  3. 3.
    Adelsbach, A., Katzenbeisser, S., Sadeghi, A.-R.: On the insecurity of non-invertible watermarking schemes for dispute resolving. In: {Proceedings of International Workshop on Digital Watermarking, IWDW 2003} {Lecture Notes in Computer Science}, vol. 2939, pp.~355–369. Springer, Berlin Heidelberg New York (2004)Google Scholar
  4. 4.
    Adelsbach, A., Pfitzmann, B., Sadeghi, A.-R.: Proving ownership of digital content. In: {Proceedings of 3rd International Workshop on Information Hiding, IH'99}[1], pp.~126–141Google Scholar
  5. 5.
    Adelsbach, A., Rohe, M., Sadeghi, A.-R.: Overcoming the obstacles of zero-knowledge watermark detection. In: {Proceedings of {ACM} Multimedia Security Workshop}, pp.~46–55 (2004)Google Scholar
  6. 6.
    Adelsbach, A., Sadeghi, A.-R.: Zero-knowledge watermark detection and proof of ownership. In: {Information Hiding—4th International Workshop, IHW 2001}, {Lecture Notes in Computer Science}, vol. 2137, pp.~273–288. Springer, Berlin Heidelberg New York (2001)Google Scholar
  7. 7.
    Adelsbach, A., Sadeghi, A.-R.: Advanced techniques for dispute resolving and authorship proofs on digital works. In: {Proceedings of SPIE vol. 5020, Security and Watermarking of Multimedia Contents V} (2003)Google Scholar
  8. 8.
    Ahrens, J.H., Dieter, U.: Computer methods for sampling from the exponential and normal distribution. {Commun. ACM} 15(10), 873–882 (1972)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Barni, M., Bartolini, F., Furon, T.: A general framework for robust watermarking security. {Signal Process., Elsevier Science Publishers {B.V.}} (83), 2069–2084 (2003)Google Scholar
  10. 10.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: {Proceedings of the 1st ACM Conference on Computer and Communications Security}, pp.~62–73. ACM Press (1993)Google Scholar
  11. 11.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. In: {Advances in Cryptology, CRYPTO '95}, {Lecture Notes in Computer Science}, vol. 963, pp.~452–465. Springer, Berlin Heidelberg New York (1995)Google Scholar
  12. 12.
    Boudot, F.: Efficient proofs that a committed number lies in an interval. In: {Advances in Cryptology, EUROCRYPT '2000}, {Lecture Notes in Computer Science}, vol. 1807, pp.~431–444. Springer, Berlin Heidelberg New York (2000)Google Scholar
  13. 13.
    Box, G.E., Muller, M.E.: A note on the generation of random normal deviates. {Ann. Math. Stat.} 29, 610–611 (1958)Google Scholar
  14. 14.
    Brassard, G., Chaum, D., Cr{é}peau, C.: Minimum disclosure proofs of knowledge. {J. Comput. Syst. Sci.} 37(2), 156–189 (1988)Google Scholar
  15. 15.
    Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes. In: {Advances in Cryptology, {EUROCRYPT} '99}, {Lecture Notes in Computer Science}, vol.~1599, pp.~107–122. Springer, Berlin Heidelberg New York (1999)Google Scholar
  16. 16.
    Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical Report TR 260, Department of Computer Science, ETH Zürich (1997)Google Scholar
  17. 17.
    Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In: {Advances in Cryptology, {EUROCRYPT} '87}, {Lecture Notes in Computer Science}, vol. 304, pp.~127–141. Springer, Berlin Heidelberg New York (1988)Google Scholar
  18. 18.
    Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable signatures, unconditionally secure for the signer. In: {Advances in Cryptology, {CRYPTO} '91}, {Lecture Notes in Computer Science}, vol. 576, pp. 470–484. Springer, Berlin Heidelberg New York (1992)Google Scholar
  19. 19.
    Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In: {Proceedings of 18th Symposium on Theory of Computing (STOC)}, pp.~364–369. ACM Press (1986)Google Scholar
  20. 20.
    Cox, I., Kilian, J., Leighton, T., Shamoon, T.: A secure, robust watermark for multimedia. In: {Information Hiding—First International Workshop, IH'96}, {Lecture Notes in Computer Science}, vol.~1174, pp.~175–190. Springer, Berlin Heidelberg New York (1996)Google Scholar
  21. 21.
    Cox, I., Miller, M.L., Bloom, J.A.: {Digital Watermarking}. Morgan Kaufmann Publisher, Orlando, FL (2002)Google Scholar
  22. 22.
    Craver, S.: Zero knowledge watermark detection. In: {Proceedings of 3rd International Workshop on Information Hiding, IH'99}[1], pp. 101–116Google Scholar
  23. 23.
    Craver, S., Liu, B., Wolf, W.: An implementation of, and attacks on, zero-knowledge watermarking. {Accepted for Information Hiding Workshop} (in press)Google Scholar
  24. 24.
    Craver, S., Memon, N., Yeo, B.-L., Yeung, M.M.: Resolving rightful ownerships with invisible watermarking techniques: limitations, attacks, and implications. {{IEEE} J. Selected Areas Commun.} 16(4), 573–586 (1998)CrossRefGoogle Scholar
  25. 25.
    Damg{å}rd, I.: Commitment schemes and zero-knowledge protocols. In: Damg{å}rd, I. (ed.) {Lectures on Data Security: modern Cryptology in Theory and Practise}, {Lecture Notes in Computer Science}, vol. 1561, pp.~63–86. Springer, Berlin Heidelberg New~York (1998)Google Scholar
  26. 26.
    Damg{å}rd, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: {Advances in Cryptology, {ASIACRYPT} '2002}, {Lecture Notes in Computer Science}, vol.~2501, pp.~125–142. Springer, Berlin Heidelberg New York (2002)Google Scholar
  27. 27.
    Eggers, J.J., Su, J.K., Girod, B.: Asymmetric watermarking schemes. In: {Sicherheit in Netzen und Medienstr{ö}men}. Springer Reihe, Informatik Aktuell (2000)Google Scholar
  28. 28.
    Furon, T., Duhamel, P.: An asymmetric public detection watermarking technique. In: {Proceedings of 3rd International Workshop on Information Hiding, IH'99}[1], pp.~88–100Google Scholar
  29. 29.
    Goldreich, O.: {Foundations of Cryptography}, volume Basic Tools. Cambridge University Press, Cambridge (2001)Google Scholar
  30. 30.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in {NP} have zero-knowledge proof systems. {J. ACM} 38(3), 690–728 (1991)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Gopalakrishnan, K., Memon, N., Vora, P.: Protocols for watermark verification. In: {Multimedia and Security, Workshop at ACM Multimedia}, pp.~91–94 (1999)Google Scholar
  32. 32.
    Kinderman, A.J., Monahan, J.F.: Computer generation of random variables using the ratio of uniform deviates. {ACM Trans. Math. Softw.} 3(3), 257–260 (1977)CrossRefGoogle Scholar
  33. 33.
    Knuth, D.E.: {The Art of Computer Programming}, Volume 2 Seminumerical Algorithms. Addison-Wesley Professional, Reading, MA (1998)Google Scholar
  34. 34.
    Leva, J.L.: A fast normal random number generator. {ACM Trans. Math. Softw.} 18(4), 449–453 (1992)zbMATHGoogle Scholar
  35. 35.
    Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: {Advances in Cryptology, {ASIACRYPT} '2003}, {Lecture Notes in Computer Science}, vol.~2894, pp.~398–415. Springer, Berlin Heidelberg New York (2003)Google Scholar
  36. 36.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL (1997) ISBN 0-8493-8523-7Google Scholar
  37. 37.
    Pfitzmann, B., Schunter, M.: Asymmetric fingerprinting (extended abstract). In: {Advances in Cryptology, {EUROCRYPT} '96}, {Lecture Notes in Computer Science}, vol.~1070, pp.~84–95. Springer, Berlin Heidelberg New York (1996)Google Scholar
  38. 38.
    Pfitzmann, B., Waidner, M.: Asymmetric fingerprinting for larger collusions. In: {Proceedings of the 4th ACM Conference on Computer and Communications Security}, pp. 151–160. ACM Press (1997)Google Scholar
  39. 39.
    Ramkumar, M., Akansu, A.: Image watermarks and counterfeit attacks: some problems and solutions. In: {Content Security and Data Hiding in Digital Media} (1999)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Andr#X00E9; Adelsbach
    • 1
    Email author
  • Markus Rohe
    • 1
  • Ahmad-Reza Sadeghi
    • 1
  1. 1.Horst-Görtz Institute for IT SecurityRuhr-Universität BochumBochumGermany

Personalised recommendations