Advertisement

Multimedia Systems

, Volume 10, Issue 6, pp 529–543 | Cite as

FAST: Toward more effective and efficient image retrieval

  • Ruofei Zhang
  • Zhongfei Mark Zhang
Regular Paper

Abstract

This paper focuses on developing a Fast And Semantics-Tailored (FAST) image retrieval methodology. Specifically, the contributions of FAST methodology to the CBIR literature include: (1) development of a new indexing method based on fuzzy logic to incorporate color, texture, and shape information into a region-based approach to improving the retrieval effectiveness and robustness; (2) development of a new hierarchical indexing structure and the corresponding hierarchical, elimination-based A* retrieval (HEAR) algorithm to significantly improve the retrieval efficiency without sacrificing the retrieval effectiveness; it is shown that HEAR is guaranteed to deliver a logarithm search in the average case; (3) employment of user relevance feedback to tailor the effective retrieval to each user's individualized query preference through the novel indexing tree pruning (ITP) and adaptive region weight updating (ARWU) algorithms. Theoretical analysis and experimental evaluations show that FAST methodology holds great promise in delivering fast and semantics-tailored image retrieval in CBIR.

Keywords

Content-based image retrieval Region-based features Hierarchical indexing structure Indexing tree pruning Relevance feedback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading, MA (1999)Google Scholar
  2. 2.
    Bentley, L.: Multi-dimensional binary search trees in database applications. IEEE Trans. Softw. Eng. 4, 333–340 (1979)Google Scholar
  3. 3.
    Berman, A., Shapiro, L.G.: Efficient image retrieval with multiple distance measure. Proc. SPIE 3022, 12–21 (1997)Google Scholar
  4. 4.
    Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1042–1053 (1993)CrossRefGoogle Scholar
  5. 5.
    Carson, C., Thomas, M., Belongie, e.a.S.: Blobworld: a system for region-based image indexing and retrieval. In: Proceedings of the 3rd International Conference on Visual Information Systems, pp. 509–516, Amsterdam (1999)Google Scholar
  6. 6.
    Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 10(5), 1055–1064 (1999)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Wang, J.Z.: A region-based fuzzy feature matching approach to content-based image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1252–1267 (2002)Google Scholar
  8. 8.
    Cox, I.J., Miller, M.L., Minka, T.P., Papathomas, T.V., Yianilos, P.N.: The bayesian image retrieval system, pichunter: theory, implementation and psychophysical experiments. IEEE Trans. Image Process. 9(1), 20–37 (2000)CrossRefGoogle Scholar
  9. 9.
    Dao, S., Yang, Q., Vellaikal, A.: mb +-tree: an index structure for content-based retrieval. In: Nwosu, K.C., Thuraisingham, B., Berra, P.B. (eds.) Multimedia Database Systems: Design and Implementation Strategies, Chap. 11. Kluwer, Norwell, MA (1996)Google Scholar
  10. 10.
    Daubechies, I.: Ten Lectures on Wavelets. Capital City Press, Montpelier, VT (1992)Google Scholar
  11. 11.
    Elmasri, R., Navathe, A.B.: Fundamentals of Database Systems, 2nd edn. Benjamin Cummings, Redwood City, CA (1994)Google Scholar
  12. 12.
    FJ et al.: An efficient region-based image retrieval framework. In: Proceedings of ACM Multimedia, Juan-les-Pins, France (2000)Google Scholar
  13. 13.
    MF et al.: Query by image and video content: the qbic system. IEEE Comput. 28(9), 23–32 (1995)Google Scholar
  14. 14.
    NB et al.: The r *-tree: an efficient and robust access mehtod for points and rectangles. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 322–331, Atlantic City, NJ (1990)Google Scholar
  15. 15.
    YK et al.: Knowing a tree from the forest: art image retrieval using a society of profiles. In: Proceedings of ACM Multimedia, Berkeley, CA (2003)Google Scholar
  16. 16.
    Gersho, A.: Asymptotically optimum block quantization. IEEE Trans. Inf. Theory 25(4), 373–380 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Guttman, O.: R-tree: a dynamic index structure for spatial searching. In: Proceedings of ACM SIGMOD, pp. 47–57, Boston (1984)Google Scholar
  18. 18.
    Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. Appl. Stat. 28, 100–108 (1979)Google Scholar
  19. 19.
    Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. Wiley, New York (1999)Google Scholar
  20. 20.
    Huang, J., Kumar, S.R., Mitra M., Zhu W., Zabih R.: Image indexing using color correlograms. In: IEEE International Conference on Computer Vision and Pattern Recognition Proceedings, Puerto Rico (1997)Google Scholar
  21. 21.
    Kautsky, J., Nichols, N.K., Jupp, D.L.B.: Smoothed histogram modification for image processing. CVGIP: Image Understand. 26(3), 271–291 (1984)Google Scholar
  22. 22.
    Kearns, Y., Mansour, M.J.: A fast, bottom-up decision tree pruning algorithm with near-optimal generalization. In: Proceedings of the 15th International Conference on Machine Learning, pp. 269–277, Madison, WI (1998)Google Scholar
  23. 23.
    Lin, K.I., Jagadish, H.V., Faloutsos, C.: The tv-tree: an index structure for high-dimensional data. VLDB J. 3, 517–546 (1994)Google Scholar
  24. 24.
    Lu, G.: Techniques and data structures for efficient multimedia retrieval based on similarity. IEEE Trans. Multimedia 4(3), 372–384 (2002)Google Scholar
  25. 25.
    Ma, W.Y., Manjunath, B.: Netra: a toolbox for navigating large image databases. In: Proceedings of the IEEE International Conference on Image Processing, pp. 568–571, Santa Barbara, CA (1997)Google Scholar
  26. 26.
    Marsicoi, M.D., Cinque, L., Levialdi, S.: Indexing pictorial documents by their content: a survey of current techniques. Image Vis. Comput. 15, 119–141 (1997)Google Scholar
  27. 27.
    Minka, T.P., Picard, R.W.: Interactive learning using a society of models. Special Issue of Pattern Recognition on Image Database: Classification Retrieval 30(4) (1997)Google Scholar
  28. 28.
    Nievergelt, J., Hinterbergre, H., Sevcik, K.C.: The grid file: an adaptive, symmetric multikey file structure. ACM Trans. Database Syst. 9, 38–71 (1984)CrossRefGoogle Scholar
  29. 29.
    Ogle, V., Stonebraker, M.: Chabot: retrieval from a relational databases of images. IEEE Comput. 28(9), 40–48 (1995)Google Scholar
  30. 30.
    Pal, S.K., Ghosh, A., Kundu, M.K.: Soft Computing for Image Processing. Physica, Mostbach (2000)Google Scholar
  31. 31.
    Pass, G., Zabih, R.: Histogram refinement for content-based image retrieval. In: IEEE Workshop on Applications of Computer Vision. Sarasota, FL (1996)Google Scholar
  32. 32.
    Porkaew, K., Chakrabarti, K., Mehrotra, S.: Query refinement for multimedia similarity retrieval in mars. In: Proceedings of ACM Multimedia (1999)Google Scholar
  33. 33.
    Prabhakar, S., Agrawal, D., Abbadi, A.E.: Data clustering for efficient range and similarity searching. In: Proceedings of the SPIE Conference on Multimedia Storage and Archiving System III, vol. 3527, pp. 419–430, Boston (1998)Google Scholar
  34. 34.
    Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, pp. 71–79. San Jose (1995)Google Scholar
  35. 35.
    Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: a power tool in interactive content-based image retrieval. IEEE Trans. Circuits Syst. Video Technol. 8(5), 644–655 (1998)Google Scholar
  36. 36.
    Russell, S., Norvig, P.: Artificial Intelligence – A Modern Approach. Prentice Hall, Englewood Cliffs, NJ (1995)Google Scholar
  37. 37.
    Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley, Reading, MA (1989)Google Scholar
  38. 38.
    Sellis, T., Roussopoulos, N., Faloutsos, C.: The r +-tree: a dynamic index for multi-dimensional objects. In: Proceedings of the 13th Conference on Very Large Databases, pp. 507–518. Brighton, UK (1987)Google Scholar
  39. 39.
    Su, Z., Li, S., Zhang, H.: Extraction of feature subspace for content-based retrieval using relevance feedback. In: Proceedings of ACM Multimedia, Ottawa, Canada (2001)Google Scholar
  40. 40.
    Tong, S., Chan, E.: Support vector machine active learning for image retrieval. In: Proceedings of ACM Multimedia, Ottawa, Canada (2001)Google Scholar
  41. 41.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin Heidelberg New York (1995)Google Scholar
  42. 42.
    Vertan, C., Boujemaa, N.: Embedding fuzzy logic in content based image retrieval. In: Proceedings of the 19th International Meeting of the North America Fuzyy Information Processing Society, Atlanta (2000)Google Scholar
  43. 43.
    Wang, J.Z., Du, Y.P.: Scalable integrated region-based image retrieval using irm and statistical clustering. In: Proceedings of the ACM and IEEE Joint Conference on Digital Libraries, Roanoke, VA (2001)Google Scholar
  44. 44.
    Wang, J.Z., Li, J., Wiederhold, G.: Simplicity: semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)CrossRefGoogle Scholar
  45. 45.
    White, D.A., Jain, R.: Similarity indexing with the ss-tree. In: Proceedings of the 12th IEEE International Conference on Data Engineering (1999)Google Scholar
  46. 46.
    Zhang, R., Zhang, Z.: Addressing cbir efficiency, effectiveness, and retrieval subjectivity simultaneously. In: 5th ACM International Workshop on Multimedia Information Retrieval, Berkeley, CA. In conjunction with ACM Multimedia (2003)Google Scholar
  47. 47.
    Zhang, R., Zhang, Z.: Hidden semantic concept discovery in region based image retrieval. In: IEEE International Conference on Computer Vision and Pattern Recogntion (CVPR), Washington, DC (2004)Google Scholar
  48. 48.
    Zhang, R., Zhang, Z.: Stretching bayesian learning in the relevance feedback of image retrieval. In: Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic (2004)Google Scholar
  49. 49.
    Zhang, R., Zhang, Z., Khanzode, S.: A data mining approach to modeling relationships among categories in image collection. In: 10th ACM International Conference on Knowledge Discovery and Data Mining, pp. 749–754, Seattle, WA (2004)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Computer ScienceSate University of New York at BinghamtonBinghamtonUSA

Personalised recommendations