Multimedia Systems

, Volume 10, Issue 1, pp 28–40 | Cite as

Multiresolution similarity search in image databases

  • Martin Heczko
  • Alexander Hinneburg
  • Daniel Keim
  • Markus Wawryniuk
Article

Abstract.

Typically searching image collections is based on features of the images. In most cases the features are based on the color histogram of the images. Similarity search based on color histograms is very efficient, but the quality of the search results is often rather poor. One of the reasons is that histogram-based systems only support a specific form of global similarity using the whole histogram as one vector. But there is more information in a histogram than the distribution of colors. This paper has two contributions: (1) a new generalized similarity search method based on a wavelet transformation of the color histograms and (2) a new effectiveness measure for image similarity search. Our generalized similarity search method has been developed to allow the user to search for images with similarities on arbitrary detail levels of the color histogram. We show that our new approach is more general and more effective than previous approaches while retaining a competitive performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashley J, Flickner M, Hafner JL, Lee D, Niblack W, Petkovic D (1995) The query by image content (QBIC) system. In: Proceedings of the ACM SIGMOD conference, p 475. ACM Press, New YorkGoogle Scholar
  2. 2.
    Aslandogan YA, Thier C, Yu CT, Zou J, Rishe N (1997) Using semantic contents and WordNet(TM) in image retrieval. In: Proceedings of the ACM SIGIR conference. ACM Press, New YorkGoogle Scholar
  3. 3.
    Berchtold S, Kriegel H-P (1997) S3: Similarity search in CAD database systems. In: Proceedings of the ACM SIGMOD conference, pp 564-567. ACM Press, New YorkGoogle Scholar
  4. 4.
    Berchtold S, Böhm C, Keim DA (2001) High-dimensional indexing - improving the performance of multimedia databases. ACM Comput Surv 33(3):322-373CrossRefGoogle Scholar
  5. 5.
    Berretti S, Del Bimbo A, Vicario E (1999) Weighting spatial arrangement of colors in content based image retrieval. In: Proceedings of the IEEE international conference on multimedia computing and systems (ICMCS), Florence, Italy, 7-11 June 1999. IEEE Press, New York, pp 845-849Google Scholar
  6. 6.
    Brunelli R, Mich O (1999) On the use of histograms for image retrieval. In: Proceedings of the IEEE international conference on multimedia computing and systems (ICMCS), Florence, Italy, 7-11 June 1999. IEEE Press, New York, pp 7-11Google Scholar
  7. 7.
    Cinque L, Levialdi S, Olsen KA, Pellican A (1999) Color-based image retrieval using spatial-chromatic histograms. In: Proceedings of the IEEE international conference on multimedia computing and systems (ICMCS), Florence, Italy, 7-11 June 1999. IEEE Press, New York, pp 969-973Google Scholar
  8. 8.
    Colombo C, Rizzi A, Genovesi I (1997) Histogram families for color-based retrieval in image databases. In: Proceedings of the 9th international conference on image analysis and processing (ICIAP ‘97), Florence, Italy, 17-19 September 1997. Lecture notes in computer science, vol 1310. Springer, Berlin Heidelberg New York, pp 204-211Google Scholar
  9. 9.
    Colombo C, Del Bimbo A, Genovesi I (1998a) Interactive image retrieval by color distributions. In: Proceedings of the IEEE international conference on multimedia computing and systems (ICMCS), Austin, TX, 28 June-1 July 1998. IEEE Press, New York, pp 255-258Google Scholar
  10. 10.
    Colombo C, Del Bimbo A, Genovesi I (1998b) Interactive image retrieval by color distributions. In: Proceedings of the IEEE international conference on multimedia computing and systems (ICMCS), Austin, TX, 28 June-1 July 1998. IEEE Press, New York, pp 255-258Google Scholar
  11. 11.
    Corbis Corp (2001) The place for pictures online. http://www.corbis.comGoogle Scholar
  12. 12.
    Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B, Gorkani M, Hafner J, Lee D, Petkovic D, Steele D, Yanker P (1995) Query by image and video content: the qbic system. IEEE Comput 28(9):23-32Google Scholar
  13. 13.
    Gevers T, Smeulders AWM (1997) Pictoseek: a content-based image search system for the world wide web. In: Proceedings of SPIE Visual ‘97, San Jose, CA, February 1997Google Scholar
  14. 14.
    Google (2001) Google image search. http://www.google.com/imghp?hl=enGoogle Scholar
  15. 15.
    Heczko M (2002) Multiresolution similarity search in image databases. http://dbvis.inf.uni-konstanz.de/research/projects/ SimSearchGoogle Scholar
  16. 16.
    Huang J, Kumar SR, Mitra M, Zhu W-J, Zabih, R ((1997) Image indexing using color correlograms. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 762-768Google Scholar
  17. 17.
    Keim DA, Heczko M, Weber R (2000) Analysis of the effectiveness-efficiency dependence for image retrieval. In: Proceedings of the 1st DELOS Network of Excellence workshop on information seeking, searching and querying in digital libraries, Zurich, SwitzerlandGoogle Scholar
  18. 18.
    Latecki L, Lakämper R (1999) Contour-based shape similarity. In: Huijsmans DP, Smeulders AWM (eds) Lecture notes in computer science, vol 1614. Springer, Berlin Heidelberg New York, pp 617-624Google Scholar
  19. 19.
    Lu G, Sajjanhar A (1999) Region-based shape representation and similarity measure suitable for content-based image retrieval. Multimedia Sys 7(2):165-174CrossRefGoogle Scholar
  20. 20.
    Müller H, Müller W, Squire DMcG, Marchand-Maillet S, Pun T (2001) Performance evaluation in content-based image retrieval: overview and proposals. Patt Recog Lett 22(5):593-601CrossRefGoogle Scholar
  21. 21.
    Natsev A, Rastogi R, Shim K (1999) WALRUS: a similarity retrieval algorithm for image databases. In: Proceedings of the ACM SIGMOD conference, Philadelphia, 1-3 June 1999. ACM Press, New York, pp 395-406Google Scholar
  22. 22.
    Pass G, Zabih R, Miller J (1996) Comparing images using color coherence vectors. In: Proceedings of ACM Multimedia, Boston, 18-22 November 1996, pp 65-73Google Scholar
  23. 23.
    Pass G, Zabih R (1999) Comparing images using joint histograms. Multimedia Sys 7:234-240CrossRefGoogle Scholar
  24. 24.
    Rao AR, Bhushan N, Lohse GL (1996) Relationship between texture terms and texture images: a study in human texture perception. In: Proceedings of Storage and Retrieval for Image and Video Databases (SPIE), pp 206-214Google Scholar
  25. 25.
    Seidl T (1997) Color similarity search. http://www.dbs.informatik.uni-muenchen.de/cgi-bin/similarity/color/Hist oWWW, http://www.dbs.informatik. uni-muenchen.de/cgi-bin/similarity/color/ctestGoogle Scholar
  26. 26.
    Seidl T, Kriegel H-P (1997) Efficient user-adaptable similarity search in large multimedia databases. In: Proceedings of the international conference on very large databases, Athens, Greece, 26-29 August 1997, pp 506-515Google Scholar
  27. 27.
    Stehling RO, Nascimento MA, Falc o AX (2002) A compact and efficient image retrieval approach based on border/interior pixel classification. In: Proceedings of the 11th ACM international conference on information and knowledge management (CIKM), McLean, VA, 4-9 November 2002, pp 102-109Google Scholar
  28. 28.
    Stollnitz EJ, DeRose TD, Salesin DH (1996) Wavelets for computer graphics, theory and applications. Morgan Kaufmann, San FranciscoGoogle Scholar
  29. 29.
    Stricker M, Swain M (1994) The capacity of color histogram indexing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Seattle, June 1994, pp 704-708Google Scholar
  30. 30.
    White DA, Jain RC (1997) ImageGREP: Fast visual pattern matching in image databases. In: Proceedings of Storage and Retrieval for Image and Video Databases (SPIE), pp 96-107Google Scholar
  31. 31.
    Wan X, Kuo C-CJ (1996) Color distribution analysis and quantization for image retrieval. In: Proceedings of Storage and Retrieval for Image and Video Databases (SPIE), pp 8-16Google Scholar
  32. 32.
    Wang JZ (2002a) Content-based image retrieval project. http://www-db.stanford.edu/IMAGE/Google Scholar
  33. 33.
    Wang JZ (2002b) Image database. http://wang.ist.psu.edu/docs/related/Google Scholar
  34. 34.
    Wang JZ, Wiederhold G, Firschein O (1997a) System for screening objectionable images using daubechies’ wavelets and color histograms. In: Steinmetz R, Wolf LC (eds) Lecture notes in computer science, vol 1309. Springer, Berlin Heidelberg New York, pp 20-30Google Scholar
  35. 35.
    Wang JZ, Wiederhold G, Firschein O, Wei SX (1997b) Content-based image indexing and searching using daubechies’ wavelets. Int J Digital Libr 1(4):311-328CrossRefGoogle Scholar
  36. 36.
    Wang JZ, Wiederhold G, Firschein O, Wei SX (1997c) Wavelet-based image indexing techniques with partial sketch retrieval capability. In: Proceedings of the 4th forum on research and technology advances in digital libraries (ADL’97), Washington, DC, pp 13-24Google Scholar
  37. 37.
    Wang JZ, Wiederhold G, Li J (1998) Wavelet-based progressive transmission and security filtering for medical image distribution. In: Wong S (ed) Medical image databases. International series in engineering and computer science, sects 465. Kluwer, Dordrecht, pp 303-324Google Scholar
  38. 38.
    Weber R, Schek H-J, Blott S (1998) A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: Proceedings of the 24th international conference on very large databases, New York, 24-27 August 1998Google Scholar
  39. 39.
    Weber R, Boehm K, Schek H-J (2000) Interactive-time similarity search for large image collections using parallel va-file. In: Proceedings of the international conference on data engineering (ICDE 2000), San Diego, pp 197-197Google Scholar
  40. 40.
    You J, Shen H, Cohen HA (1997) An efficient parallel texture classification for image retrieval. J Vis Lang Comput 8(3):259-372Google Scholar
  41. 41.
    Zhang A, Cheng B, Acharya R (1995) Texture-based image retrieval in image database systems. In: Revell N, Tjoa AM (eds) In: Proceedings of the 6th international conference on database and expert systems applications (DEXA’95), London, 4-8 September 1995. ONMIPRESS, San Mateo, CA, pp 349-356Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • Martin Heczko
    • 1
  • Alexander Hinneburg
    • 1
  • Daniel Keim
    • 2
  • Markus Wawryniuk
    • 2
  1. 1.Institute of Computer ScienceUniversity of HalleHalle (Saale)Germany
  2. 2.Department of Computer & Information ScienceUniversity of KonstanzKonstanzGermany

Personalised recommendations