Advertisement

Elliptic boundary value problems for the stationary vacuum spacetimes

  • Zhongshan AnEmail author
Article

Abstract

We develop a general method of proving the ellipticity of boundary value problems for the stationary vacuum spacetimes, showing that the stationary vacuum field equations are elliptic subjected to a geometrically natural collection of boundary conditions in the projection formalism. As an application, we prove that the moduli space of stationary vacuum spacetimes admits Banach manifold structure.

Mathematics Subject Classification

58J05 83C05 53Z05 

Notes

Acknowledgements

I would like to express great thanks to my advisor Michael Anderson for suggesting this problem and for valuable discussions and comments. I would also thank the anonymous referees for their valuable suggestions to improve the quality of this paper.

References

  1. 1.
    Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure App. Math. 12, 623–727 (1964)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure App. Math. 17, 35–92 (1964)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arnowitt, R., Deser, S., Misner, C.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122, 997–1006 (1961)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Anderson, M., Herzlich, M.: Unique continuation results for Ricci curvature and applications. J. Geom. Phys. 58, 179–207 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Anderson, M., Khuri, M.: On the Bartnik extension problem for static vacuum Einstein metrics. Class. Quantum Gravity 30, 125005 (2013)CrossRefGoogle Scholar
  6. 6.
    Andersson, L., Moncrief, V.: Elliptic-hyperbolic systems and the Einstein equations. Ann. Henri Poincaré 4, 1–34 (2003)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Anderson, M.: On boundary value problems for Einstein metrics. Geom. Topol. 12, 2009–2015 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Anderson, M.: On stationary vacuum solutions to the Einstein equations. Ann. Henri Poincaré 1, 977–994 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    An, Z.: Ellipticity of Bartnik boundary data for stationary vacuum spacetimes. PreprintGoogle Scholar
  10. 10.
    Besse, A.: Einstein Manifolds. Springer, New York (1987)CrossRefGoogle Scholar
  11. 11.
    Bartnik, R.: Energy in general relativity, Tsing Hua lectures on geometry and analysis, pp. 5–27. International Press, Cambridge (1997)zbMATHGoogle Scholar
  12. 12.
    Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bartnik, R.: Phase space for the Einstein equations. Commun. Anal. Geom. 13(5), 845–885 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chrusciel, P.T., Costa, J.L., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 15, 7 (2012)CrossRefGoogle Scholar
  15. 15.
    Geroch, R.P.: A method for generating solutions of Einstein’s equations. J. Math. Phys. 12, 918–924 (1971)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752 (1977)CrossRefGoogle Scholar
  17. 17.
    Heusler, M.: Black Hole Uniqueness Theorems. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  18. 18.
    Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 1(1), 6 (1998)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Klenk, J.: Existence of stationary vacuum solutions of Einstein’s equations in an exterior domain. J. Aust. Math. Soc. Ser. B 41, 231–247 (1991)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kramers, D., Stephani, H., MacCallum, M., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar
  21. 21.
    Lichnerowicz, A.: Theories Relativistes de la Gravitation et de L’Electromagnetisme. Masson and Cie, Paris (1995)zbMATHGoogle Scholar
  22. 22.
    Lee, J., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Moncrief, V.: Spacetime symmetries and linearization stability of the Einstein equations I. J. Math. Phys. 16(3), 493–498 (1975)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Moncrief, V.: Spacetime symmetries and linearization stability of the Einstein equations II. J. Math. Phys. 17(10), 1893–1902 (1976)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Miao, P.: On existence of static metric extensions in general relativity. Commun. Math. Phys. 241, 27–46 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Miao, P.: A remark on boundary effects in static vacuum initial data sets. Class. Quantum Gravity 22, 53–59 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Miao, P.: Some recent developments of the Bartnik mass. In: Proceedings of ICCM 2007, vol. III, pp. 331–340. International Press, Boston (2010)Google Scholar
  28. 28.
    Petersen, P.: Riemannian Geometry. Springer, New York (1998)CrossRefGoogle Scholar
  29. 29.
    Reula, O.: On existence and behaviour of asymptotically flat solutions to the stationary Einstein equations. Commun. Math. Phys. 112(4), 615–624 (1989)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. 88, 286–318 (1974)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Treves, F.: Basic Linear Partial Differential Equations. Academic Press, New York (1975)zbMATHGoogle Scholar
  32. 32.
    Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1894)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.University of ConnecticutStorrsUSA

Personalised recommendations