Advertisement

Asymptotics for scaled Kramers–Smoluchowski equations in several dimensions with general potentials

  • Insuk Seo
  • Peyam TabrizianEmail author
Article
  • 18 Downloads

Abstract

In this paper, we generalize the results of Evans and Tabrizian (SIAM J Math Anal 48:2944–2961, 2016), by deriving asymptotics for the time-rescaled Kramers–Smoluchowski equations, in the case of a general non-symmetric potential function with multiple wells. The asymptotic limit is described by a system of reaction–diffusion equations whose coefficients are determined by the Kramers constants at the saddle points of the potential function and the Hessians of the potential function at global minima.

Mathematics Subject Classification

35K15 35K57 35J20 

Notes

Acknowledgements

The authors wish to thank Professor Lawrence C. Evans for his fruitful discussions. The research of I. Seo is supported by the National Research Foundation of Korea NRF grant funded by the Korean government MSIT (Project 2018R1C1B6006896).

References

  1. 1.
    Arnrich, S., Mielke, A., Peletier, M.A., Savare, G., Veneroni, M.: Passage to the limit in a Wasserstein gradient flow: from diffusion to reaction. Calc. Var. Partial Differ. Equ. 44, 419–454 (2012)CrossRefGoogle Scholar
  2. 2.
    Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diusion processes I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6, 399–424 (2004)CrossRefGoogle Scholar
  3. 3.
    Evans, C., Tabrizian, P.: Asymptotics for scaled Kramers–Smoluchoswski equations. SIAM J. Math. Anal. 48, 2944–2961 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Freidlin, M. I., Wentzell, A.D.: Random perturbations. In: Random Perturbations of Dynamical Systems. Grundlehren der mathematischen Wissenschaften, vol. 260. Springer, New York, NY (1998) Google Scholar
  5. 5.
    Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)CrossRefGoogle Scholar
  6. 6.
    Herrmann, M., Niethammer, B.: Kramers’ formula for chemical reactions in the context of Wasserstein gradient flows. Commun. Math. Sci. 9, 623–635 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Landim, C.: Metastable markov chains (2018). arXiv:1807.04144
  8. 8.
    Landim, C.: Variational formulae for the capacity induced by second-order elliptic differential operators. In: Proc. Int. Cong. of Math.—2018 Rio de Janeiro, vol. 2, pp. 2603–2628 (2018)Google Scholar
  9. 9.
    Landim, C., Mariani, M., Seo, I.: A Dirichlet and a Thomson principle for non-selfadjoint elliptic operators, Metastability in non-reversible diffusion processes (2017). Submitted. arxiv:1701.00985
  10. 10.
    Landim, C., Misturini, R., Tsunoda, K.: Metastability of reversible random walks in potential field. J. Stat. Phys. 160, 1449–1482 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Landim, C., Seo, I.: Metastability of one-dimensional, non-reversible diffusions with periodic boundary conditions (2017). Submitted. arxiv:1710.06672
  12. 12.
    Michel, L., Zworski, M.: A semiclassical approach to the Kramers-Smoluchowski equation. SIAM J. Math. Anal. 50(5), 5362–5379 (2018).  https://doi.org/10.1137/17M1124826 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Peletier, M.A., Savare, G., Veneroni, M.: From diffusion to reaction via \(\Gamma \)-convergence. SIAM J. Math. Anal. 42, 1805–1825 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Peletier, M.A., Savare, G., Veneroni, M.: Chemical reactions as \(\Gamma \)-limit of diffusion. SIAM Rev. 54, 327–352 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rezakhanlou, F., Seo, I.: Scaling limit of metastable diffusion processes. Preprint (2018)Google Scholar
  16. 16.
    Tabrizian, P.R.: Asymptotic PDE models for chemical reactions and diffusions. Ph.D. Thesis. University of California, Berkeley (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical Sciences and Research Institute of MathematicsSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of MathematicsUniversity of California, IrvineIrvineUSA

Personalised recommendations