Advertisement

\(C^{1,1}\) regularity of geodesics in the space of volume forms

  • Jianchun ChuEmail author
Article
  • 74 Downloads

Abstract

We prove a \(C^{1,1}\) estimate for solutions of a class of fully nonlinear equations introduced by Chen–He. As an application, we prove the \(C^{1,1}\) regularity of geodesics in the space of volume forms.

Mathematics Subject Classification

Primary: 58E10 Secondary: 58D17 35J60 35J70 

Notes

References

  1. 1.
    Błocki, Z.: Regularity of the degenerate Monge–Ampère equation on compact Kähler manifolds. Math. Z. 244, 153–161 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chen, X.X., He, W.Y.: The space of volume forms. Int. Math. Res. Not. IMRN 5, 967–1009 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chen, X.X., He, W.Y.: A class of fully nonlinear equations. Preprint arXiv:1802.04985
  4. 4.
    Chu, J., Tosatti, V., Weinkove, B.: On the \(C^{1,1}\) regularity of geodesics in the space of Kähler metrics. Ann. PDE 3(2), Art. 15, (2017)Google Scholar
  5. 5.
    Darvas, T.: Morse theory and geodesics in the space of Kähler metrics. Proc. Am. Math. Soc. 142(8), 2775–2782 (2014)CrossRefGoogle Scholar
  6. 6.
    Darvas, T., Lempert, L.: Weak geodesics in the space of Kähler metrics. Math. Res. Lett. 19(5), 1127–1135 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Donaldson, S.: Nahm’s Equations and Free-Boundary Problems, The Many Facets of Geometry, pp. 71–91. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  8. 8.
    Gursky, M., Streets, J.: A formal Riemannian structure on conformal classes and uniqueness for the \(\sigma _{2}\)-Yamabe problem. Geom. Topol. 22(6), 3501–3573 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    He, W.Y.: The Donaldson equation. Preprint arXiv:0810.4123
  10. 10.
    Lempert, L., Vivas, L.: Geodesics in the space of Kähler metrics. Duke Math. J. 162(7), 1369–1381 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Mathematics, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations