Advertisement

On positive solutions of semi-linear elliptic inequalities on Riemannian manifolds

  • Alexander Grigor’yan
  • Yuhua SunEmail author
Article
  • 33 Downloads

Abstract

We determine the critical exponent for certain semi-linear elliptic problem on a Riemannian manifold assuming the volume regularity and Green function estimates.

Mathematics Subject Classification

Primary 58J05 Secondary 35J61 

Notes

Acknowledgements

The authors would like to express their deep gratitude to the late Prof. Vladimir A. Kondratiev who initiated the study of the above problems. The authors are indebted to Prof. Igor Verbitsky for helpful discussions on the subject of the paper. The authors are also grateful to the anonymous referee for useful comments.

References

  1. 1.
    Barlow, M.T.: Which values of the volume growth and escape time exponent are possible for a graph? Rev. Mat. Iberoam. 20(1), 1–31 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bidaut-Véron, M.F.: Local and global behavior of solutions of quasilinear equations of Emden–Fowler type. Arch. Ration. Mech. Anal. 107(4), 293–324 (1989)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bidaut-Véron, M.F.: Local behaviour of solutions of a class of nonlinear elliptic systems. Adv. Differ. Equ. 5, 147–192 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Caristi, G., D’Ambrosio, L., Mitidieri, E.: Liouville theorems for some nonlinear inequalities. Proc. Steklov Inst. Math. 260, 90–111 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Caristi, G., Mitidieri, E., Pohozaev, S.I.: Some Liouville theorems for quasilinear elliptic inequalities. Dokl. Math. 79, 118–124 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cheng, S.Y., Yau, S.-T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28, 333–354 (1975)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)zbMATHGoogle Scholar
  9. 9.
    Grigor’yan, A.: On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds. Mat. Sb. 128(3), 354–363 (1985). (in Russian). Engl. transl.: Math. USSR Sb. 56(2), 349–358 (1987)Google Scholar
  10. 10.
    Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36, 135–249 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Grigor’yan, A.: Heat kernels on weighted manifolds and applications. Contemp. Math. 398, 93–191 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP, Providence (2009)zbMATHGoogle Scholar
  13. 13.
    Grigor’yan, A., Hansen, W.: Lower estimates for a perturbed Green function. J. Anal. Math. 104, 25–58 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grigor’yan, A., Kondratiev, V.A.: On the existence of positive solutions of semi-linear elliptic inequalities on Riemannian manifolds. Int. Math. Ser. 12, 203–218 (2010)CrossRefGoogle Scholar
  15. 15.
    Grigor’yan, A., Netrusov, Y., Yau, S.-T.: Eigenvalues of elliptic operators and geometric applications. Surv. Differ. Geom. IX, 147–218 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Grigor’yan, A., Sun, Y.: On non-negative of the inequality \(\Delta u+u^{\sigma }\le 0\) on Riemannian manifolds. Commun. Pure Appl. Math. 67(8), 1336–1352 (2014)CrossRefGoogle Scholar
  17. 17.
    Hebisch, W., Saloff-Coste, L.: Gaussian estimates for Markov chains and random walks on groups. Ann. Prob. 21, 673–709 (1993)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kanai, M.: Rough isometries, and combinatorial approximations of geometries of non-compact Riemannian manifolds. J. Math. Soc. Jpn. 37(3), 391–413 (1985)CrossRefGoogle Scholar
  19. 19.
    Kanai, M.: Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Jpn. 38(2), 227–238 (1986)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kondratiev, V., Liskevich, V., Sobol, Z.: Second-order semilinear elliptic inequalities in exterior domains. J. Differ. Equ. 187, 429–455 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kurta, V.V.: On the absence of positive solutions to semilinear elliptic equations. Tr. Mat. Inst. Steklova 227, 162–169 (1999). (in Russian). Engl. transl.: Proc. Steklov Inst. Math. 227(4), 155–162 (1999)Google Scholar
  22. 22.
    Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa 3(17), 43–77 (1963)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Liu, Y., Wang, Y., Xiao, J.: Nonnegative solutions of a fractional sub-Laplacian differential inequality on Heisenberg group. Dyn. Partial Differ. Eq. 12(4), 379–403 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mastrolia, P., Monticelli, D.D., Punzo, F.: Nonexistence results for elliptic differential inequalities with a potential on Riemannian manifolds. Calc. Var. PDEs 54(2), 1345–1372 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mastrolia, P., Monticelli, D.D., Punzo, F.: Nonexistence of solutions to parabolic differential inequalities with a potential on Riemannian manifolds. Math. Ann. 367(3–4), 929–963 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mitidieri, E., Pohozaev, S.I.: Absence of global positive solutions of quasilinear elliptic inequalities. Dokl. Akad. Nauk. 359(4), 456–460 (1998). (in Russian) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Mitidieri, E., Pohozaev, S.I.: Nonexistence of positive solutions for quasilinear elliptic problems on \({\mathbb{R}}^{N}\). Proc. Steklov Inst. Math. 227, 186–216 (1999)Google Scholar
  28. 28.
    Mitidieri, E., Pohozaev, S.I.: A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Math. Inst. Steklova 234, 1–384 (2001). (in Russian). Engl. transl.: Proc. Steklov Inst. Math. 234(3), 1–362 (2001)Google Scholar
  29. 29.
    Sun, Y.: Uniqueness result for non-negative solutions of semi-linear inequalities on Riemannian manifolds. J. Math. Anal. Appl. 419, 643–661 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wang, Y., Xiao, J.: A constructive approach to positive solutions of \(\Delta _{p}u+f(u,\nabla u)\le 0\) on Riemannian manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(6), 1497–1507 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical Sciences and LPMCNankai UniversityTianjinPeople’s Republic of China
  2. 2.Department of MathematicsUniversity of BielefeldBielefeldGermany

Personalised recommendations