Advertisement

General least gradient problems with obstacle

  • Morteza Fotouhi
  • Amir MoradifamEmail author
Article
  • 56 Downloads

Abstract

We study existence, structure, uniqueness and regularity of solutions of the obstacle problem
$$\begin{aligned} \inf _{u\in BV_f(\Omega )}\int _{\Omega }\phi (x,Du), \end{aligned}$$
where \(BV_f(\Omega )=\{u\in BV({\mathbb {R}}^n): u\ge \psi \text { in }\Omega \text { and } u|_{\partial \Omega }=f|_{\partial \Omega }\}\), \(f \in W^{1,1}_0({\mathbb {R}}^n)\), \(\psi \) is the obstacle, and \(\phi (x,\xi )\) is a convex, continuous and homogeneous function of degree one with respect to the \(\xi \) variable. We show that every minimizer of this problem is also a minimizer of the least gradient problem
$$\begin{aligned} \inf _{u\in {\mathcal {A}}_f(\Omega )}\int _{{\mathbb {R}}^n}\phi (x,Du), \end{aligned}$$
where \({\mathcal {A}}_f(\Omega )=\{u\in BV(\Omega ): u\ge \psi , \text { and } u=f \text { in }\Omega ^c\}\). Moreover, there exists a vector field T with \(\nabla \cdot T \le 0\) in \(\Omega \) which determines the structure of all minimizers of these two problems, and T is divergence free on \(\{x\in \Omega : u(x)>\psi (x)\}\) for any minimizer u. We also present uniqueness and regularity results that are based on maximum principles for minimal surfaces. Since minimizers of the least gradient problems with obstacle do not hit small enough obstacles, the results presented in this paper extend several results in the literature about least gradient problems without obstacle.

Mathematics Subject Classification

35B65 35R35 49N60 

Notes

References

  1. 1.
    Alberti, G.: A Lusin type theorem for gradients. J. Funct. Anal. 100(1), 110–118 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amar, M., Bellettini, G.: A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri Poincare Anal. Non Lineaire 11, 91–133 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. (4) 135(1), 293–318 (1983)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. North-Holland-Elsevier, Amsterdam (1976)zbMATHGoogle Scholar
  6. 6.
    Górny, W.: Planar least gradient problem: existence, regularity and anisotropic case. Calc. Var. Partial Differ. Equ. 57(4), 27 (2018). Art. 98MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jerrard, R.L., Moradifam, A., Nachman, A.I.: Existence and uniqueness of minimizers of general least gradient problems. J. Reine Angew. Math. 734, 71–97 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Juutinen, P.: p-Harmonic approximation of functions of least gradient. Indiana Univ. Math. J. 54, 1015–1029 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kohn, R., Strang, G.: The Constrained Least Gradient Problem. Nonclassical Continuum Mechanics, (Durham, 1986). London Mathematical Society Lecture Note Series, vol. 122, pp. 226–243. Cambridge University Press, Cambridge (1987)Google Scholar
  10. 10.
    Mazón, J.M., Rossi, J.D., Segura de León, S.: Functions of least gradient and 1-harmonic functions. Indiana Univ. Math. J. 63(4), 1067–1084 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Miranda, M.: Comportamento delle successioni convergenti di frontiere minimali. Rend. Sem. Mat. Univ. Padova 38, 238–257 (1967)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Moradifam, A.: Existence and structure of minimizers of least gradient problems. Indiana Univ. Math. J. 67(3), 1025–1037 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Moradifam, A.: Least gradient problems with Neumann boundary condition. J. Differ. Equ. 263(11), 7900–7918 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Moradifam, A., Nachman, A., Tamasan, A.: Conductivity imaging from one interior measurement in the presence of perfectly conducting and insulating inclusions. SIAM J. Math. Anal. 44, 3969–3990 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Moradifam, A., Nachman, A., Timonov, A.: A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data. Inverse Probl. 28, 084003 (2012). (23pp)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nachman, A., Tamasan, A., Timonov, A.: Conductivity imaging with a single measurement of boundary and interior data. Inverse Probl. 23, 2551–2563 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nachman, A., Tamasan, A., Timonov, A.: Recovering the conductivity from a single measurement of interior data. Inverse Probl. 25, 035014 (2009). (16pp)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nachman, A., Tamasan, A., Timonov, A.: Reconstruction of planar conductivities in subdomains from incomplete data. SIAM J. Appl. Math. 70(8), 3342–3362 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Schoen, R., Simon Jr., L., Almgren, F.J.: Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. Acta Math. 139(3–4), 217–265 (1977)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Simon, L.: A strict maximum principle for area minimizing hypersurfaces. J. Differ. Geom. 26(2), 327–335 (1987)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sternberg, P., Williams, G., Ziemer, W.P.: Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430, 35–60 (1992)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Sternberg, P., Williams, G., Ziemer, W.P.: The constrained least gradient problem in \(R^n\). Trans. Am. Math. Soc. 339(1), 403–432 (1993)zbMATHGoogle Scholar
  23. 23.
    Ziemer, W.P., Zumbrun, K.: The obstacle problem for functions of least gradient. Math. Bohem. 124(2–3), 193–219 (1999)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zuniga, A.: Continuity of minimizers to weighted least gradient problems. Nonlinear Anal. 178, 86–109 (2019)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesSharif University of TechnologyTehranIran
  2. 2.Department of MathematicsUniversity of CaliforniaRiversideUSA

Personalised recommendations