New strong maximum and comparison principles for fully nonlinear degenerate elliptic PDEs
Article
First Online:
- 171 Downloads
Abstract
We introduce a notion of subunit vector field for fully nonlinear degenerate elliptic equations. We prove that an interior maximum of a viscosity subsolution of such an equation propagates along the trajectories of subunit vector fields. This implies strong maximum and minimum principles when the operator has a family of subunit vector fields satisfying the Hörmander condition. In particular these results hold for a large class of nonlinear subelliptic PDEs in Carnot groups. We prove also a strong comparison principle for degenerate elliptic equations that can be written in Hamilton–Jacobi–Bellman form, such as those involving the Pucci’s extremal operators over Hörmander vector fields.
Mathematics Subject Classification
Primary: 35B50 35J70 35J60 Secondary: 49L25 35H20Notes
References
- 1.Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser Boston Inc, Boston, MA (1997)CrossRefGoogle Scholar
- 2.Bardi, M., Cesaroni, A.: Liouville properties and critical value of fully nonlinear elliptic operators. J. Differ. Equ. 261(7), 3775–3799 (2016)MathSciNetCrossRefGoogle Scholar
- 3.Bardi, M., Da Lio, F.: On the strong maximum principle for fully nonlinear degenerate elliptic equations. Arch. Math. (Basel) 73(4), 276–285 (1999)MathSciNetCrossRefGoogle Scholar
- 4.Bardi, M., Da Lio, F.: Propagation of maxima and strong maximum principle for viscosity solutions of degenerate elliptic equations. I. Convex operators. Nonlinear Anal. 44(8, Ser. A: Theory Methods), 991–1006 (2001)MathSciNetCrossRefGoogle Scholar
- 5.Bardi, M., Da Lio, F.: Propagation of maxima and strong maximum principle for viscosity solutions of degenerate elliptic equations. II. Concave operators. Indiana Univ. Math. J. 52(3), 607–627 (2003)MathSciNetCrossRefGoogle Scholar
- 6.Bardi, M., Mannucci, P.: On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Commun. Pure Appl. Anal. 5(4), 709–731 (2006)MathSciNetCrossRefGoogle Scholar
- 7.Barles, G., Busca, J.: Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Commun. Partial Differ. Equ. 26(11–12), 2323–2337 (2001)MathSciNetCrossRefGoogle Scholar
- 8.Beatrous, F.H., Bieske, T.J., Manfredi, J.J.: The maximum principle for vector fields. In: The p-Harmonic Equation and Recent Advances in Analysis, volume 370 of Contemp. Math., pp. 1–9. Amer. Math. Soc., Providence, RI (2005)Google Scholar
- 9.Bieske, T.: On \(\infty \)-harmonic functions on the Heisenberg group. Commun. Partial Differ. Equ. 27(3–4), 727–761 (2002)MathSciNetCrossRefGoogle Scholar
- 10.Bieske, T.: A sub-Riemannian maximum principle and its application to the \(p\)-Laplacian in Carnot groups. Ann. Acad. Sci. Fenn. Math. 37(1), 119–134 (2012)MathSciNetCrossRefGoogle Scholar
- 11.Bieske, T., Capogna, L.: The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot–Carathéodory metrics. Trans. Am. Math. Soc. 357(2), 795–823 (2005)CrossRefGoogle Scholar
- 12.Bieske, T., Martin, E.: The parabolic infinite-Laplace equation in Carnot groups. Michigan Math. J. 65(3), 489–509 (2016)MathSciNetCrossRefGoogle Scholar
- 13.Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer, Berlin (2007)zbMATHGoogle Scholar
- 14.Bony, J.-M.: Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19(fasc. 1), 277–304 xii (1969)MathSciNetCrossRefGoogle Scholar
- 15.Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society, Providence, RI (1995)CrossRefGoogle Scholar
- 16.Capogna, L., Zhou, X.: Strong comparison principle for \(p\)-harmonic functions in Carnot-Caratheodory spaces. Proc. Am. Math. Soc. 146(10), 4265–4274 (2018)MathSciNetCrossRefGoogle Scholar
- 17.Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)MathSciNetCrossRefGoogle Scholar
- 18.Fefferman, C., Phong, D.H.: Subelliptic eigenvalue problems. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II, Chicago, Ill., 1981, pp. 590–606. Wadsworth, Belmont, CA (1983)Google Scholar
- 19.Feleqi, E., Rampazzo, F.: Iterated Lie brackets for nonsmooth vector fields. NoDEA Nonlinear Differ. Equ. Appl. 24(6), 61 (2017)MathSciNetCrossRefGoogle Scholar
- 20.Giga, Y., Ohnuma, M.: On strong comparison principle for semicontinuous viscosity solutions of some nonlinear elliptic equations. Int. J. Pure Appl. Math. 22(2), 165–184 (2005)MathSciNetzbMATHGoogle Scholar
- 21.Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)CrossRefGoogle Scholar
- 22.Goffi, A.: Topics in nonlinear PDEs: from Mean Field Games to problems modeled on Hörmander vector fields. PhD thesis, Gran Sasso Science Institute (2019)Google Scholar
- 23.Jensen, R.: Uniqueness criteria for viscosity solutions of fully nonlinear elliptic partial differential equations. Indiana Univ. Math. J. 38(3), 629–667 (1989)MathSciNetCrossRefGoogle Scholar
- 24.Kawohl, B., Kutev, N.: Strong maximum principle for semicontinuous viscosity solutions of nonlinear partial differential equations. Arch. Math. (Basel) 70(6), 470–478 (1998)MathSciNetCrossRefGoogle Scholar
- 25.Kawohl, B., Kutev, N.: Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations. Commun. Partial Differ. Equ. 32(7–9), 1209–1224 (2007)MathSciNetCrossRefGoogle Scholar
- 26.Li, Y., Wang, B.: Strong comparison principles for some nonlinear degenerate elliptic equations. Acta Math. Sci. Ser. B (Engl. Ed.) 38(5), 1583–1590 (2018)MathSciNetzbMATHGoogle Scholar
- 27.Manfredi, J.J.: Nonlinear subelliptic equations on Carnot groups. Notes of a course given at the third school on analysis and geometry in metric spaces. http://www.pitt.edu/~manfredi/papers/fullynonlsubtrentofinal.pdf (2003)
- 28.Montanari, A., Lanconelli, E.: Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems. J. Differ. Equ. 202(2), 306–331 (2004)MathSciNetCrossRefGoogle Scholar
- 29.Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications to the strong maximum principle. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, pp. 333–359. University of California Press, Berkeley, CA (1972)Google Scholar
- 30.Taira, K.: Diffusion Processes and Partial Differential Equations. Academic Press Inc, Boston, MA (1988)zbMATHGoogle Scholar
- 31.Trudinger, N.S.: Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations. Rev. Mat. Iberoam. 4(3–4), 453–468 (1988)MathSciNetCrossRefGoogle Scholar
- 32.Wang, C.: The Aronsson equation for absolute minimizers of \(L^\infty \)-functionals associated with vector fields satisfying Hörmander’s condition. Trans. Am. Math. Soc. 359(1), 91–113 (2007)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019