Advertisement

A Liouville theorem for the p-Laplacian and related questions

  • Alberto Farina
  • Carlo MercuriEmail author
  • Michel Willem
Article
  • 257 Downloads

Abstract

We prove several classification results for p-Laplacian problems on bounded and unbounded domains, and deal with qualitative properties of sign-changing solutions to p-Laplacian equations on \({{\mathbb {R}}}^N\) involving critical nonlinearities. Moreover, on radial domains we characterise the compactness of possibly sign-changing Palais–Smale sequences.

Mathematics Subject Classification

35J92 (35B33 · 35B53 · 35B38) 

Notes

References

  1. 1.
    Coron, J.M.: Topologie et cas limite del injections de Sobolev. C.R. Acad. Sci. Paris 299, 209–212 (1984)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Damascelli, L., Farina, A., Sciunzi, B., Valdinoci, E.: Liouville results for m-Laplace equations of Lane–Emden–Fowler type. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(4), 1099–1119 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Di Benedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1983)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Esteban, M., Lions, P.-L.: Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinb. Sect. A 93, 1–14 (1982/83)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Farina, A.: On the classification of solutions of the Lane–Emden equation on unbounded domains of \({\mathbb{R}}^N\). J. Math. Pures Appl. (9) 87(5), 537–561 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Guedda, M., Veron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13, 879–902 (1989)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guedda, M., Veron, L.: Local and global properties of solutions of quasi-linear elliptic equations. J. Differ. Equ. 76, 159–189 (1988)CrossRefGoogle Scholar
  8. 8.
    Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mawhin, J., Willem, M.: Origin and evolution of the Palais–Smale condition in critical point theory. J. Fixed Point Theory Appl. 7(2), 265–290 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mercuri, C., Willem, M.: A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete Contin. Dyn. Syst. A 28, 469–493 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mercuri, C., Sciunzi, B., Squassina, M.: On Coron’s problem for the p-Laplacian. J. Math. Anal. Appl. 28, 362–369 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Peral, I.: Multiplicity of solutions for the p-Laplacian. Lecture Notes for the Second School of Nonlinear Functional Analysis and Applications to Differential Equations. International Centre of Theoretical Physics, Trieste (Italy) (1997)Google Scholar
  13. 13.
    Pohozhaev, S.I.: On the eigenfunctions for the equations \(\Delta u +\lambda f(u)=0\). Sov. Math. Dokl. 6, 1408–1411 (1965)Google Scholar
  14. 14.
    Pucci, P., Serrin, J.: The Maximum Principle. Progress in Nonlinear Differential Equations and their Applications, vol. 73. Birkhäuser Verlag, Basel (2007)zbMATHGoogle Scholar
  15. 15.
    Sciunzi, B.: Classification of positive \(D({\mathbb{R}}^N)\)-solutions to the critical \(p\)-Laplace equation in \({\mathbb{R}}^N\). Adv. Math. 291, 12–23 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Trudinger, N.S.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa 27, 265–308 (1973)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Vazquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Vétois, J.: A priori estimates and application to the symmetry of solutions for critical p-Laplace equations. J. Differ. Equ. 260, 149–161 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LAMFA, CNRS UMR 7352, Faculté des SciencesUniversité de Picardie Jules VerneAmiens Cedex 1France
  2. 2.Department of Mathematics, Computational FoundrySwansea UniversitySwanseaUK
  3. 3.Département de MathématiquesUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations