Advertisement

New affine inequalities and projection mean ellipsoids

  • Du Zou
  • Ge XiongEmail author
Article
  • 8 Downloads

Abstract

A variational formula for the Lutwak affine surface areas \(\Lambda _{j}\) of convex bodies in \(\mathbb {R}^n\) is established when \(1\le j\le n-1.\) By using introduced new ellipsoids associated with projection functions of convex bodies, we prove a sharp isoperimetric inequality for \(\Lambda _{j}\), which opens up a new passage to attack the longstanding Lutwak conjecture in convex geometry.

Mathematics Subject Classification

52A40 46B06 

Notes

References

  1. 1.
    Ball, K.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44, 351–359 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dann, S., Paouris, G., Pivovarov, P.: Bounding marginal densities via affine isoperimetry. Proc. Lond. Math. Soc. 113, 140–162 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Furstenberg, H., Tzkoni, I.: Spherical functions and integral geometry. Israel J. Math. 10, 327–338 (1971)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gardner, R.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. 39, 355–405 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gardner, R.: Geometric Tomography. Cambridge University Press, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Giannopoulos, A., Papadimitrakis, M.: Isotropic surface area measures. Mathematika 46, 1–13 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Grinberg, E.: Isoperimetric inequalities and identities for \(k\)-dimensional cross-sections of convex bodies. Math. Ann. 291, 75–86 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gruber, P.: Convex and Discrete Geometry. Springer, Berlin (2007)zbMATHGoogle Scholar
  9. 9.
    Hu, J., Xiong, G., Zou, D.: On mixed \(L_p\) John ellipsoids, Adv. Geom. (2019, to appear)Google Scholar
  10. 10.
    Hu, J., Xiong, G., Zou, D.: New affine inequalities and intersection mean ellipsoids (submitted)Google Scholar
  11. 11.
    Lutwak, E.: A general isepiphanic inequality. Proc. Am. Math. Soc. 90, 415–421 (1984)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lutwak, E.: Inequalities for Hadwiger’s harmonic quermassintegrals. Math. Ann. 280, 165–175 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lutwak, E.: Selected affine isoperimetric inequalities. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, pp. 151–176. North-Holland, Amsterdam (1993)CrossRefGoogle Scholar
  14. 14.
    Lutwak, E., Yang, D., Zhang, G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375–390 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for subspaces of \(L_{p}\). J. Differ. Geom. 68, 159–184 (2004)CrossRefGoogle Scholar
  16. 16.
    Lutwak, E., Yang, D., Zhang, G.: \(L_p\) John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005)CrossRefGoogle Scholar
  17. 17.
    Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for isotropic measures. Am. J. Math. 129, 1711–1723 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lutwak, E., Yang, D., Zhang, G.: A volume inequality for polar bodies. J. Differ. Geom. 84, 163–178 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Milman, V., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \(n\)-dimensional space. In: Lindenstrauss J., Milman V. D. (eds.) Geometric Aspects of Functional Analysis (1987–1988), Lecture Notes in Math., 1376, pp. 64–104. Springer, Berlin (1989)Google Scholar
  20. 20.
    Ossermann, R.: The isoperimetric inequality. Bull. Am. Math. Soc. 84, 1182–1238 (1978)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Petty, C.: Surface area of a convex body under affine transformations. Proc. Am. Math. Soc. 12, 824–828 (1961)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Petty, C.: Isoperimetric problems. In: Proceedings of the Conference on Convexity and Combinatorial Geometry, pp. 26-41. University of Oklahoma, Norman (1971)Google Scholar
  23. 23.
    Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (2014)zbMATHGoogle Scholar
  24. 24.
    Schuster, F., Weberndorfer, M.: Volume inequalities for asymmetric Wulff shapes. J. Differ. Geom. 92, 263–283 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Xiong, G.: Extremum problems for the cone volume functional of convex polytopes. Adv. Math. 225, 3214–3228 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, G.: Restricted chord projection and affine inequalities. Geom. Dedicata 39, 213–222 (1991)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhang, G.: New affine isoperimetric inequalities. ICCM 265, 239–267 (2007)Google Scholar
  28. 28.
    Zou, D., Xiong, G.: Orlicz–John ellipsoids. Adv. Math. 265, 132–168 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zou, D., Xiong, G.: Orlicz–Legendre ellipsoids. J. Geom. Anal. 26, 2474–2502 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsWuhan University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.School of Mathematical SciencesTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations