Advertisement

Uniqueness of the mean field equation and rigidity of Hawking Mass

  • Yuguang Shi
  • Jiacheng Sun
  • Gang Tian
  • Dongyi WeiEmail author
Article
  • 28 Downloads

Abstract

In this paper, we prove that the even solution of the mean field equation \(\Delta u=\lambda (1-e^u) \) on \(S^2\) must be axially symmetric when \(4<\lambda \le 8\). In particular, zero is the only even solution for \(\lambda =6\). This implies the rigidity of Hawking mass for stable constant mean curvature sphere with even symmetry.

Mathematics Subject Classification

35J20 53C21 

Notes

Acknowledgements

We are very grateful to Juncheng Wei for suggesting us the sphere covering inequality of Gui and Moradifam [11]. The second author also want to thank Jie Qing for pointing out the relation between rigidity of Hawking mass and eigenvalue problem. Many thanks to Changfeng Gui for many discussions on mean field equation.

References

  1. 1.
    Bandle, C.: Isoperimetric Inequalities and Applications, Volume 7 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass.-London, (1980)Google Scholar
  2. 2.
    Bartnik, R.: Mass and 3-metrics of non-negative scalar curvature. In: Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 231–240, Higher Ed. Press, Beijing (2002)Google Scholar
  3. 3.
    Bartolucci, D., Lin, C.S.: Existence and uniqueness for mean field equations on multiply connected domains at the critical parameter. Math. Ann. 359, 1–44 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bol, G.: Isoperimetrische Ungleichungen \(f\ddot{u}r\) Bereiche auf \(Fl\ddot{a}chen\). Jber. Deutsch. Math. Verein. 51, 219–257 (1941)MathSciNetGoogle Scholar
  5. 5.
    Bray, H.L.: The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature. Thesis, Stanford University, Stanford (1997)Google Scholar
  6. 6.
    Chen, C.C., Lin, C.S.: Topological degree for a mean field equation on Riemann surfaces. Commun. Pure Appl. Math. 56(12), 1667–1727 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Christodoulou, D., Yau, S.-T.: Some remarks on the quasi-local mass. Contemp. Math. 71, 9–14 (1988)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ding, W., Jost, J., Li, J., Wang, G.: The differential equation \(\Delta u=8\pi -8\pi he^u \) on a compact Riemann surface. Asian J. Math. 1, 230–248 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ding, W., Jost, J., Li, J., Wang, G.: An analysis of the two-vortex case in the Chern-Simons Higgs model. Calc. Var. 7, 87–97 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ghoussoub, N., Lin, C.S.: On the best constant in the Moser-Onofri-Aubin inequality. Commun. Math. Phys. 298(3), 869–878 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gui, C., Moradifam, A.: The Sphere Covering Inequality and Its Applications, arXiv:1605.06481v3. Invent. math. (2018). https://doi.org/10.1007/s00222-018-0820-2
  12. 12.
    Gui, C., Moradifam, A.: Uniqueness of Solutions of Mean Field Equations in \(\mathbb{R}^2\), arXiv:1612.08403v2. Proc. Amer. Math. Soc. 146(3), 1231–1242 (2018)
  13. 13.
    Hang, F., Wang, X.: Rigidity and non-rigidity results on the sphere. Commun. Anal. Geom. 14, 91–106 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose Inequality. J. Differ. Geom. 59, 353–437 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ji, D., Shi, Y., Zhu, B.: Exhaustion of isoperimetric regions in asymptotically hyperbolic manifolds with scalar curvature \(R\ge -6\), preprint, arXiv:1512.02732v2, Commun. Anal. Geom. 26(3), 627–658 (2018)
  16. 16.
    Kazdan, J., Warner, F.: Curvature functions for compact 2-manifolds. Ann. Math. 99, 14–47 (1974)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, Y.Y.: Harnack type inequality: the method of moving planes. Commun. Math. Phys. 200, 421–444 (1999)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lin, C.S.: Topological degree for mean field equations on \(S^2\). Duke Math. J. 104(3), 501–536 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lin, C.S., Lucia, M.: One-dimensional symmetry of periodic minimizers for a mean field equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(2), 269–290 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Miao, P.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6, 1163–1182 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Onofri, E.: On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys. 86, 321–326 (1982)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Shi, Y., Tam, L.F.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62, 79–125 (2002)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Shi, Y., Tam, L.F.: Rigidity of compact manifolds and positivity of quasi-local mass. Class. Quantum Gravity 24(9), 2357–2366 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Shi, Y.: The isoperimetric inequality on asymptotically flat manifolds with nonnegative scalar curvature. Int. Math. Res. Not. IMRN 22, 7038–7050 (2016)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Sun, J.: Rigidity of Hawking mass for surfaces in three manifolds. arXiv:1703.02352, Pacific J. Math. 292(2), 479–504 (2018)
  26. 26.
    Suzuki, T.: Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 9(4), 367–397 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuguang Shi
    • 1
  • Jiacheng Sun
    • 1
  • Gang Tian
    • 1
  • Dongyi Wei
    • 1
    Email author
  1. 1.School of Mathematical Sciences and BICMRPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations