Skip to main content
Log in

Multiple normalized solutions for a competing system of Schrödinger equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove the existence of infinitely many solutions \(\lambda _1, \lambda _2 \in \mathbb {R}\), \(u,v \in H^1(\mathbb {R}^3)\), for the nonlinear Schrödinger system

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u - \lambda _1 u = \mu u^3+ \beta u v^2 &{} \text {in }\mathbb {R}^3 \\ -\Delta v- \lambda _2 v = \mu v^3 +\beta u^2 v &{} \text {in }\mathbb {R}^3\\ u,v>0 &{} \text {in }\mathbb {R}^3 \\ \int _{\mathbb {R}^3} u^2 = a^2 \quad \text {and} \quad \int _{\mathbb {R}^3} v^2 = a^2, \end{array}\right. } \end{aligned}$$

where \(a,\mu >0\) and \(\beta \le -\mu \) are prescribed. Our solutions satisfy \(u\ne v\) so they do not come from a scalar equation. The proof is based on a new minimax argument, suited to deal with normalization conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Indeed, in [16] the authors exploit a uniform-in-\(\beta \) Palais–Smale condition to derive the convergence of the whole minimax structure to a limit problem.

  2. In [6] we showed that \({\mathcal {P}}_\beta \) is a \(\mathcal {C}^1\) manifold since this was enough for our purpose, the extra regularity is straightforward.

References

  1. Bahri, A., Lions, P.L.: Morse index of some min-max critical points. I. Application to multiplicity results. Commun. Pure Appl. Math. 41(8), 1027–1037 (1988)

    Article  MathSciNet  Google Scholar 

  2. Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37(3–4), 345–361 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bartsch, T., de Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Archiv der Math. 100(1), 75–83 (2012)

    Article  Google Scholar 

  4. Bartsch, T., Jeanjean, L.: Normalized solutions for nonlinear Schrödinger systems. Proc. R. Soc. Edinb. (2015). (to appear), arXiv:1507.04649

  5. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3\). J. de Math. Pures et Appl. 106(4), 583–614 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272(12), 4998–5037 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cao, D., Chern, I.-L., Wei, J.: On ground state of spinor Bose–Einstein condensates. NoDEA Nonlinear Differ. Equ. Appl. 18, 427–445 (2011)

    Article  MathSciNet  Google Scholar 

  8. Dancer, E., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. de l’Inst. Henri Poincare (C) Non Linear Anal. 27(3), 953–969 (2010)

    Article  Google Scholar 

  9. Fibich, G., Merle, F.: Self-focusing on bounded domains. Phys. D 155(12), 132–158 (2001)

    Article  MathSciNet  Google Scholar 

  10. Ghoussoub, N.: Duality and perturbation methods in critical point theory, volume 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1993). With appendices by David Robinson

  11. Gou, T., Jeanjean, L.: Existence and orbital stability of standing waves for nonlinear Schrödinger systems. Nonlinear Anal. 144, 10–22 (2016)

    Article  MathSciNet  Google Scholar 

  12. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  13. Lions, P.L.: The concentration-compactness principle in the calculus of variations. the locally compact case, part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  14. Lions, P.L.: The concentration-compactness principle in the calculus of variations. the locally compact case, part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  15. Nguyen, N.V., Wang, Z.-Q.: Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete Contin. Dyn. Syst. 36(2), 1005–1021 (2016)

    Article  MathSciNet  Google Scholar 

  16. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Convergence of minimax structures and continuation of critical points for singularly perturbed systems. J. Eur. Math. Soc. 14(4), 1245–1273 (2012)

    Article  MathSciNet  Google Scholar 

  17. Noris, B., Tavares, H., Verzini, G.: Existence and orbital stability of the ground states with prescribed mass for the \(L^2\)-critical and supercritical NLS on bounded domains. Anal. PDE 7(8), 1807–1838 (2014)

    Article  MathSciNet  Google Scholar 

  18. Noris, B., Tavares, H., Verzini, G.: Stable solitary waves with prescribed \(L^2\)-mass for the cubic Schrödinger system with trapping potentials. Discrete Contin. Dyn. Syst. 35(12), 6085–6112 (2015)

    Article  MathSciNet  Google Scholar 

  19. Pierotti, D., Verzini, G.: Normalized bound states for the nonlinear Schrödinger equation in bounded domains. Preprint (2016). arXiv:1607.04520

  20. Solimini, S.: Morse index estimates in min-max theorems. Manuscr. Math. 63(4), 421–453 (1989)

    Article  MathSciNet  Google Scholar 

  21. Stuart, C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. Lond. Math. Soc. 45(1), 169–192 (1982)

    Article  MathSciNet  Google Scholar 

  22. Stuart, C.A.: Bifurcation from the continuous spectrum in \(L^2\)-theory of elliptic equations on \(\mathbb{R}^N\). Recent Methods in Nonlinear Analysis and Applications, Liguori, Napoli (1981)

Download references

Acknowledgements

Nicola Soave is partially supported by the project ERC Advanced Grant 2013 No. 339958 “Complex Patterns for Strongly Interacting Dynamical Systems - COMPAT”, by the PRIN-2015KB9WPT_010 Grant: “Variational methods, with applications to problems in mathematical physics and geometry”, and by the GNAMPA group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Soave.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartsch, T., Soave, N. Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. 58, 22 (2019). https://doi.org/10.1007/s00526-018-1476-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1476-x

Mathematics Subject Classification

Navigation