Advertisement

A class of conserved surface layer integrals for causal variational principles

  • Felix FinsterEmail author
  • Johannes Kleiner
Article
  • 40 Downloads

Abstract

In the theory of causal fermion systems, the physical equations are obtained as the Euler–Lagrange equations of a causal variational principle. Studying families of critical measures of causal variational principles, a class of conserved surface layer integrals is found and analyzed.

Mathematics Subject Classification

49Q20 49S05 58C35 58Z05 49K21 49K27 28C99 83C47 

Notes

Acknowledgements

We would like to thank Andreas Platzer and the referee for helpful comments on the manuscript.

References

  1. 1.
    Bogachev, V.I.: Measure Theory, vol. I. Springer, Berlin (2007)CrossRefGoogle Scholar
  2. 2.
    Dappiaggi, C., Finster, F.: Linearized fields for causal variational principles: existence theory and causal structure. arXiv:1811.10587 [math-ph] (2018)
  3. 3.
    Finster, F.: Fermionic fock space dynamics for causal fermion systems (in preparation) Google Scholar
  4. 4.
    Finster, F.: Causal variational principles on measure spaces. J. Reine Angew. Math. 646, 141–194 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Finster, F.: The continuum limit of causal fermion systems. In: Fundamental Theories of Physics, vol. 186. Springer. arXiv:1605.04742 [math-ph] (2016)
  6. 6.
    Finster, F.: The causal action in Minkowski space and surface layer integrals. arXiv:1711.07058 [math-ph] (2017)
  7. 7.
    Finster, F.: Perturbation theory for critical points of causal variational principles. arXiv:1703.05059 [math-ph] (2017)
  8. 8.
    Finster, F., Kamran, N.: Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles. arXiv:1808.03177 [math-ph] (2018)
  9. 9.
    Finster, F., Kleiner, J.: Causal fermion systems as a candidate for a unified physical theory. J. Phys. Conf. Ser. 626, 012020 (2015)CrossRefGoogle Scholar
  10. 10.
    Finster, F., Kleiner, J.: Noether-like theorems for causal variational principles. Calc. Var. Partial Differ. Equ. 55(3), 35 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Finster, F., Kleiner, J.: A Hamiltonian formulation of causal variational principles. Calc. Var. Partial Differ. Equ. 56(3), 73 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Finster, F., Platzer, A.: The total mass of a static causal fermion system (in preparation) Google Scholar
  13. 13.
    Finster, F., Schiefeneder, D.: On the support of minimizers of causal variational principles. Arch. Ration. Mech. Anal. 210(2), 321–364 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Halmos, P.R.: Measure Theory. Springer, New York (1974)zbMATHGoogle Scholar
  15. 15.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany
  2. 2.Institut für Theoretische PhysikLeibniz UniversitätHannoverGermany

Personalised recommendations