Advertisement

The Helfrich boundary value problem

  • Sascha EichmannEmail author
Article
  • 36 Downloads

Abstract

We construct a branched Helfrich immersion satisfying Dirichlet boundary conditions. The number of branch points is finite. We proceed by a variational argument and hence examine the Helfrich energy for oriented varifolds. The main contribution of this paper is a lower semicontinuity result with respect to oriented varifold convergence for the Helfrich energy and a minimising sequence. For arbitrary sequences this is false by a counterexample of Große-Brauckmann.

Mathematics Subject Classification

35J35 35J40 58J32 49Q20 49Q10 

Notes

References

  1. 1.
    Agmon, S.: Maximum theorems for solutions of higher order elliptic equations. Bull. Am. Math. Soc. 66(2), 77–80 (1960)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Allard, W.K.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anzellotti, G., Serapioni, R., Tamanini, I.: Curvatures, functionals, currents. Indiana Univ. Math. J. 39, 617–669 (1990)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bauer, M., Kuwert, E.: Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. 10, 553–576 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brakke, K.A.: The Motion of a Surface by Its Mean Curvature. Mathematical Notes. Princeton University Press, Princeton (1978)zbMATHGoogle Scholar
  6. 6.
    Canham, P.B.: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26(1), 61–76 (1970)CrossRefGoogle Scholar
  7. 7.
    Choksi, R., Morandotti, M., Veneroni, M.: Global minimizers for axisymmetric multiphase membranes. ESAIM COCV 19(4), 1014–1029 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Choksi, R., Veneroni, M.: Global minimizers for the doubly-constrained helfrich energy: the axisymmetric case. Calc. Var. Partial Differ. Equ. 48(3), 337–366 (2013)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Da Lio, F., Palmurella, F., Rivière, T.: A resolution of the poisson problem for elastic plates. (2018) arXiv:1807.09373v1 [math.DG], Preprint
  10. 10.
    Dall’Acqua, A., Deckelnick, K., Grunau, H-Ch.: Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv. Calc. Var. 1, 379–397 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Dall’Acqua, A., Fröhlich, S., Grunau, H-Ch., Schieweck, F.: Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv. Calc. Var. 4, 1–81 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Deckelnick, K., Grunau, H-Ch., Röger, M.: Minimising a relaxed Willmore functional for graphs subject to boundary conditions. Interfaces Free Bound. 19, 109–140 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Delladio, S.: Special generalized Gauss graphs and their application to minimization of functionals involving curvatures. J. Reine Angew. Math 486, 17–43 (1997)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Doemeland, M.: Verallgemeinerung eines Existenzsatzes für axialsymmetrische Minimierer des Willmore-Funktionals auf das Helfrich-Funktional. Scientific project, Otto-von-Guericke University Magdeburg, Supervisors, H.-Chr. Grunau, J. Wiersig (2015)Google Scholar
  15. 15.
    Eichmann, S., Grunau, H.-Chr.: Existence for Willmore surfaces of revolution satisfying non-symmetric Dirichlet boundary conditions. Adv. Calc. Var. (2017).  https://doi.org/10.1515/acv-2016-0038
  16. 16.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)zbMATHGoogle Scholar
  17. 17.
    Federer, Herbert: Geometric Measure Theory. Springer, Berlin (1969)zbMATHGoogle Scholar
  18. 18.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 3rd edn. Springer, Berlin (1998)zbMATHGoogle Scholar
  19. 19.
    Große-Brauckmann, K.: New surfaces of constant mean curvature. Math. Z. 214, 527–565 (1993)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973)CrossRefGoogle Scholar
  21. 21.
    Hutchinson, J.E.: Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana U. Math. J. 35, 45–71 (1986)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lee, John M.: Introduction to Smooth Manifolds, 2nd edn. Springer, Berlin (2013)zbMATHGoogle Scholar
  23. 23.
    Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems, 1st edn. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  24. 24.
    Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. 149, 683–782 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ndiaye, C.B., Schätzle, R.: A convergence theorem for immersions with \(L^2\)-bounded second fundamental form. Rend. Semin. Mat. Univ. Padova 127, 235–248 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nitsche, J.C.C.: Boundary value problems for variational integrals involving surface curvatures. Quart. Appl. Math. 51, 363–387 (1993)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ou-Yang, Z.: Elasticity theory of biomembranes. Thin Solid Films 393, 19–23 (2001)CrossRefGoogle Scholar
  28. 28.
    Ou-Yang, Z., Helfrich, W.: Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39(10), 5280–5288 (1989)CrossRefGoogle Scholar
  29. 29.
    Schätzle, R.: Lower semicontinuity of the Willmore functional for currents. J. Differ. Geom. 81(2), 437–456 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Schätzle, R.: The Willmore boundary problem. Calc. Var. Partial Differ. Equ. 37, 275–302 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Scholtes, S.: Elastic catenoids. Analysis 31, 125–143 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Schätzle, R.: Geometrische Maßtheorie. Lecture notes, Tübingen University, (2008/09)Google Scholar
  33. 33.
    Schygulla, J.: Willmore Minimizers with prescribed isoperimetric ratio. Arch. Ration. Mech. Anal. 203(3), 901–941 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre For Mathematical Analysis, Australian National University, 1st edn (1983)Google Scholar
  35. 35.
    Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1, 281–326 (1993)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Thomsen, G.: Über Konforme Geometrie I: Grundlagen der konformen Flächentheorie. Hamb. Math. Abh. 3, 31–56 (1924)CrossRefGoogle Scholar
  37. 37.
    Willmore, T.J.: Note on embedded surfaces. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Seçt. I a Mat 11, 493–496 (1965)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematisch-Naturwissenschaftliche FakultätEberhard Karls Universität TübingenTübingenGermany

Personalised recommendations