Interpolation and optimal hitting for complete minimal surfaces with finite total curvature

  • Antonio AlarcónEmail author
  • Ildefonso Castro-Infantes
  • Francisco J. López


We prove that, given a compact Riemann surface \(\Sigma \) and disjoint finite sets \(\varnothing \ne E\subset \Sigma \) and \(\Lambda \subset \Sigma \), every map \(\Lambda \rightarrow \mathbb {R}^3\) extends to a complete conformal minimal immersion \(\Sigma \setminus E\rightarrow \mathbb {R}^3\) with finite total curvature. This result opens the door to study optimal hitting problems in the framework of complete minimal surfaces in \(\mathbb {R}^3\) with finite total curvature. To this respect we provide, for each integer \(r\ge 1\), a set \(A\subset \mathbb {R}^3\) consisting of \(12r+3\) points in an affine plane such that if A is contained in a complete nonflat orientable immersed minimal surface \(X:M\rightarrow \mathbb {R}^3\), then the absolute value of the total curvature of X is greater than \(4\pi r\). In order to prove this result we obtain an upper bound for the number of intersections of a complete immersed minimal surface of finite total curvature in \(\mathbb {R}^3\) with a straight line not contained in it, in terms of the total curvature and the Euler characteristic of the surface.

Mathematics Subject Classification

53A10 52C42 30D30 32E30 



The authors were partially supported by the State Research Agency (SRA) and European Regional Development Fund (ERDF) via the Grants Nos. MTM2014-52368-P and MTM2017-89677-P, MICINN, Spain. They wish to thank an anonymous referee for valuable suggestions which led to an improvement of the exposition.


  1. 1.
    Alarcón, A., Castro-Infantes, I.: Interpolation by conformal minimal surfaces and directed holomorphic curves. Anal. PDE 12(2), 561–604 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alarcón, A., Forstnerič, F.: New complex analytic methods in the theory of minimal surfaces: a survey. J. Aust. Math. Soc. (2018).
  3. 3.
    Alarcón, A., Forstnerič, F.: Null curves and directed immersions of open Riemann surfaces. Invent. Math. 196(3), 733–771 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alarcón, A., Forstnerič, F., López, F.J.: New complex analytic methods in the study of non-orientable minimal surfaces in \({\mathbb{R}}^n\). Mem. Amer. Math. Soc. (in press) Google Scholar
  5. 5.
    Alarcón, A., Forstnerič, F., López, F.J.: Embedded minimal surfaces in \({\mathbb{R}}^n\). Math. Z. 283(1–2), 1–24 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Alarcón, A., López, F.J.: Minimal surfaces in \({\mathbb{R}}^3\) properly projecting into \({\mathbb{R}}^2\). J. Differ. Geom. 90(3), 351–381 (2012)CrossRefGoogle Scholar
  7. 7.
    Alarcón, A., López, F.J.: Approximation theory for nonorientable minimal surfaces and applications. Geom. Topol. 19(2), 1015–1062 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Barbosa, J.L.M., Colares, A.G.: Minimal Surfaces in \({\mathbf{R}}^{3}\), Volume 1195 of Lecture Notes in Mathematics. Springer, Berlin (1986). Translated from the PortugueseGoogle Scholar
  9. 9.
    Behnke, H., Stein, K.: Entwicklung analytischer Funktionen auf Riemannschen Flächen. Math. Ann. 120, 430–461 (1949)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bishop, E.: Subalgebras of functions on a Riemann surface. Pac. J. Math. 8, 29–50 (1958)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Forstnerič, F.: Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis (2nd edn), Volume 56 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Berlin (2017)Google Scholar
  12. 12.
    Huber, A.: On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32, 13–72 (1957)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jorge, L.P., Meeks III, W.H.: The topology of complete minimal surfaces of finite total Gaussian curvature. Topology 22(2), 203–221 (1983)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lárusson, F.: What is \(\ldots \) an Oka manifold? Not. Am. Math. Soc. 57(1), 50–52 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    López, F.J.: Uniform approximation by complete minimal surfaces of finite total curvature in \({\mathbb{R}}^3\). Trans. Am. Math. Soc. 366(12), 6201–6227 (2014)CrossRefGoogle Scholar
  16. 16.
    López, F.J., Martín, F.: Complete minimal surfaces in \({\mathbf{R}}^3\). Publ. Mat. 43(2), 341–449 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mergelyan, S.N.: On the representation of functions by series of polynomials on closed sets. Doklady Akad. Nauk SSSR (N.S.) 78, 405–408 (1951)MathSciNetGoogle Scholar
  18. 18.
    Osserman, R.: A Survey of Minimal Surfaces, 2nd edn. Dover Publications Inc., New York (1986)zbMATHGoogle Scholar
  19. 19.
    Pirola, G.P.: Algebraic curves and non-rigid minimal surfaces in the Euclidean space. Pac. J. Math. 183(2), 333–357 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Royden, H.L.: Function theory on compact Riemann surfaces. J. Anal. Math. 18, 295–327 (1967)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Runge, C.: Zur Theorie der Analytischen Functionen. Acta Math. 6(1), 245–248 (1885)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Walsh, J.L.: On the expansion of analytic functions in series of polynomials and in series of other analytic functions. Trans. Am. Math. Soc. 30(2), 307–332 (1928)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yang, K.: Complete Minimal Surfaces of Finite Total Curvature. Volume 294 Mathematics and Its Applications. Kluwer Academic Publishers Group, Dordrecht (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Antonio Alarcón
    • 1
    Email author
  • Ildefonso Castro-Infantes
    • 1
  • Francisco J. López
    • 1
  1. 1.Departamento de Geometría y Topología e Instituto de Matemáticas (IEMath-GR)Universidad de GranadaGranadaSpain

Personalised recommendations