On the fractional Lazer–McKenna conjecture with superlinear potential

  • B. AbdellaouiEmail author
  • A. Dieb
  • F. Mahmoudi


The goal of this paper is to study the following non-local superlinear elliptic problem
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} (-\Delta )^s u=|u|^p-\sigma \phi _1 &{}\hbox {in } \Omega ,\\ u=0 &{}\hbox {in } {\mathbb {R}}^N{\setminus }\Omega ,\\ u>0 &{}\hbox {in }\Omega , \end{array}\right. \end{aligned}$$
where \((-\Delta )^s\) is the fractional Laplace operator, \(\Omega \subset \mathbb R^N\) is an open domain with Lipschitz boundary, \(\sigma >0\), \(p\in (1, 2^*_s-1)\) with \(2^{*}_{s}=\frac{2N}{N-2s}\) and \(\phi _1\) is the first positive eigenfunction of the fractional Laplacian with Dirichlet boundary condition. We prove the non-local version of a conjecture due to Lazer and McKenna (Proc R Soc Edinb Sect A 95:275–283, 1983) by constructing solutions with sharp peaks near local maximum points of \(\phi _1\).

Mathematics Subject Classification

35R11 35A15 35A16 35J61 



The authors would like to express their gratitude to the anonymous referee for his/her comments and suggestions that has improved the last version of the manuscript. Part of this work was carried out while the second author was visiting the Center of Mathematical Modeling (CMM) Universidad de Chile. He is thankful for their kind hospitality. B. Abdellaoui is partially supported by Project MTM2013-40846-P and MTM2016-80474-P, MINECO, Spain. F. Mahmoudi has been supported by Fondecyt Grant 1180526, CONICYT + PIA/Concurso apoyo a Centros Científicos y Tecnológicos de Excelencia, Fondo Basal AFB170001.


  1. 1.
    Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \({\mathbb{R}}^N\), Progress in Mathematics 240. Birkhäuser, Basel (2006)zbMATHGoogle Scholar
  2. 2.
    Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159, 253–271 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ambrosetti, A., Prodi, G.: On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat. Pura Appl. (4) 93, 231–246 (1972)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bahri, A.: Critical Points at Infinity in Some Variational Problems, Research Notes in Mathematics, 182. Longman-Pitman, London (1989)Google Scholar
  5. 5.
    Bisci, G.M., Radulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  6. 6.
    Breuer, B., McKenna, P.J., Plum, M.: Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Differ. Equ. 195, 243–269 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. Henri Poincare (C) Non Linear Anal. 31(1), 23–53 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, H., Veron, L.: Semilinear fractional elliptic equations involving measures. J. Differ. Equ. 257, 1457–1486 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Córdoba, A., Córdoba, D.: A pointwise estimate for fractionary derivatives with applications to partial differential equations. Proc. Natl. Acad. Sci. USA 100(26), 15316–15317 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dancer, E.N., Yan, Shusen: On the superlinear Lazer–McKenna conjecture. J. Differ. Equ. 210, 317–351 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dancer, E.N., Yan, S.: On the superlinear Lazer–McKenna conjecture: Part II. Commun. Part. Differ. Equ. 30, 1331–1358 (2005)CrossRefGoogle Scholar
  12. 12.
    Dancer, E.N., Santra, S.: On the superlinear Lazer–McKenna conjecture: the nonhomogeneous case. Adv. Differ. Equ. 12, 961–993 (2007)zbMATHGoogle Scholar
  13. 13.
    Dávila, J., Del Pino, M., Dipierro, S., Valdinoci, E.: Concentration phenomena for the nonlocal Schördinger equation with Dirichlet datum. Analisis PDE 8(5), 1165–1235 (2015)CrossRefGoogle Scholar
  14. 14.
    Dávila, J., del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Scöhrdinger equation. J. Differ. Equ. 256(2), 858–892 (2014)CrossRefGoogle Scholar
  15. 15.
    De Napoli, P.L., Drelichman, I.: Elementary proofs of embedding theorems for potential spaces of radial functions. In: Rushansky, M.V., Tikhonov, S. (eds.) Methods of Fourier Analysis and Approximation Theory, Chapter, pp. 115–137. Birkhauser, BostonGoogle Scholar
  16. 16.
    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dipierro, S., Montoro, L., Peral, I., Sciunzi, D.: Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy–Leray potential. Calc. Var. Part. Differ. Equ. 55(4), 29 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Frank, R.L., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacians in \({\mathbb{R}}\). Acta Math. 210(2), 261–318 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69, 1671–1726 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gongbao, L., Jianfu, Y., Yan, S.: Solutions with boundary layer and positive peak for an elliptic Dirichlet problem. Proc. R. Soc. Edinb. Sect. A 134, 515–536 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hofer, H.: A note on the topological degree at a critical point of mountain pass type. Proc. A.M.S. 3, 309–315 (1984)CrossRefGoogle Scholar
  22. 22.
    Lazer, A., McKenna, P.J.: On a conjecture related to the number of solutions of a nonlinear Dirichlet problem. Proc. R. Soc. Edinb. Sect. A 95, 275–283 (1983)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Leonori, T., Peral, I., Primo, A., Soria, F.: Basic estimates for solution of elliptic and parabolic equations for a class of nonlocal operators. Discrete Contin. Dyn. Syst. A 35(12), 6031–6068 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195(2), 455–467 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ros-Oton, X., Serra, J.: The Pohozaev identity for the fractional Laplacian. Arch. Ration. Mech. Anal. 213(2), 587–628 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, Département de MathématiquesUniversité Abou Bakr Belkaïd, TlemcenTlemcenAlgeria
  2. 2.Laboratoire d’Analyse Nonlinéaire et Mathématiques AppliquéesUniversité Abou Bakr Belkaïd, TlemcenTlemcenAlgeria
  3. 3.Département de MathématiquesUniversité Ibn Khaldoun, TiaretTiaretAlgeria
  4. 4.Centro de Modelamiento MatemáticoUniversidad de ChileSantiagoChile
  5. 5.Department of Mathematics, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia

Personalised recommendations