Embeddings of Riemannian manifolds with finite eigenvector fields of connection Laplacian

  • Chen-Yun Lin
  • Hau-Tieng WuEmail author


We study the problem asking if one can embed manifolds into finite dimensional Euclidean spaces by taking finite number of eigenvector fields of the connection Laplacian. This problem is essential for the dimension reduction problem in manifold learning. In this paper, we provide a positive answer to the problem. Specifically, we use eigenvector fields to construct local coordinate charts with low distortion, and show that the distortion constants depend only on geometric properties of manifolds with metrics in the little Hölder space \(c^{2,\alpha }\). Next, we use the coordinate charts to embed the entire manifold into a finite dimensional Euclidean space. The proof of the results relies on solving the elliptic system and providing estimates for eigenvector fields and the heat kernel and their gradients. We also provide approximation results for eigenvector field under the \(c^{2,\alpha }\) perturbation.

Mathematics Subject Classification

53C23 62-07 35K08 35J47 



Hau-tieng Wu’s research is partially supported by Sloan Research Fellow FR-2015-65363. Chen-Yun Lin would like to thank Thomas Nyberg for his helpful discussions. The authors acknowledge anonymous reviewers’ valuable comments.


  1. 1.
    Alexeev, B., Bandeira, A.S., Fickus, M., Mixon, D.G.: Phase retrieval with polarization. SIAM J. Imaging Sci. 7(1), 35–66 (2014). CrossRefzbMATHGoogle Scholar
  2. 2.
    Anderson, M.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102, 429–445 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anderson, M.T., Cheeger, J.: \(c^\alpha \)-compactness for manifolds with Ricci curvature and injectivity radius bounded below. J. Differ. Geom. 35, 265–281 (1992)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bates, J.: The embedding dimension of Laplacian eigenfunction maps. Appl. Comput. Harmon. Anal. 37(3), 516–530 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)CrossRefGoogle Scholar
  6. 6.
    Bérard, P.: Spectral Geometry: Direct and Inverse Problems. Springer, New York (1986)CrossRefGoogle Scholar
  7. 7.
    Bérard, P., Besson, G., Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4, 373–398 (1994). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Grundlehren Text Editions. Springer, Berlin (2004)zbMATHGoogle Scholar
  9. 9.
    Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. American Mathematical Society, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Chung, F.: Spectral Graph Theory. American Mathematical Society, New York (1996)CrossRefGoogle Scholar
  11. 11.
    Chung, F., Kempton, M.: A local clustering algorithm for connection graphs. In: Bonato, A., Mitzenmacher, M., Pralat, P. (eds.) Algorithms and Models for the Web Graph, Volume 8305 of Lecture Notes in Computer Science, pp. 26–43. Springer, New York (2013)Google Scholar
  12. 12.
    Chung, F., Zhao, W., Kempton, M.: Ranking and sparsifying a connection graph. In: Bonato, A., Janssen, J. (eds.) Algorithms and Models for the Web Graph. Lecture Notes in Computer Science, vol. 7323, pp. 66–77. Springer, Berlin (2012)CrossRefGoogle Scholar
  13. 13.
    Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Coulhon, T., Devyver, B., Sikora, A.: Gaussian heat kernel estimates: from functions to forms (2016). arXiv:1606.02423 [math.AP]
  15. 15.
    Croke, C.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. Ecole Norm. Sup. 13, 419–435 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    DeTurck, D., Kazdan, J.: Some regularity theorems in riemannian geometry. Ann. Sci. Ec. Norm. Sup. 14, 249–260 (1981)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Devyver, B.: A Gaussian estimate for the heat kernel on differential forms and application to the Riesz transform. Math. Ann. 358(1–2), 25–68 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dolzmann, G., Múller, S.: Estimates for green’s matrices of elliptic systems by \(l^p\) theory. Manuscripta Mathematica 88(1), 261–273 (1995)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. USA 100(10), 5591–5596 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    El Karoui, N., Wu, H.-T.: Connection graph Laplacian and random matrices with random blocks. Inf. Inference J. IMA 4, 1–42 (2015)CrossRefGoogle Scholar
  21. 21.
    El Karoui, N., Wu, H.-T.: Connection graph Laplacian methods can be made robust to noise. Ann. Stat. 44(1), 346–372 (2016)CrossRefGoogle Scholar
  22. 22.
    Gilkey, P.: The Index Theorem and the Heat Equation. Publish or Perish, inc., Boston (1974)zbMATHGoogle Scholar
  23. 23.
    Hadani, R., Singer, A.: Representation theoretic patterns in three dimensional cryo-electron microscopy I: the intrinsic reconstitution algorithm. Ann. Math. 174(2), 1219–1241 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hess, H., Schrader, R., Uhlenbrock, D.A.: Kato’s inequality and the spectral distribution of Laplacians on compact Riemannian Manifolfs. J. Differ. Geom. 15(1), 27–37 (1980)CrossRefGoogle Scholar
  25. 25.
    Jones, P., Maggioni, M., Schul, R.: Universal local parametrization via heat kernels and eigenfunctions of the Laplacian. Ann. Acad. Sci. Fenn. Math. 35, 131–174 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kufner, A., John, O., Fucik, S.: Function Spaces. Noordhoff International Publishing, Sussex (1977)zbMATHGoogle Scholar
  27. 27.
    Lederman, R.R., Talmon, R.: Learning the geometry of common latent variables using alternating-diffusion. Appl. Comput. Harmon. Anal. 44(3), 509–536. MathSciNetCrossRefGoogle Scholar
  28. 28.
    Li, P., Yau, S.T.: On the parabolic kernel of the schrödinger operator. Acta Math. 156(1), 153–201 (1986)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Marchesini, S., Tu, Y.-C., Wu, H.-T.: Alternating projection, ptychographic imaging and phase synchronization. Appl. Comput. Harmon. Anal. 41(3), 815–851 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, New York (1966)zbMATHGoogle Scholar
  31. 31.
    Nash, J.: The imbedding problem for Riemannian Manifolds. Ann. Math. 63(1), 20–63 (1956)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Palais, R.: Foundations of Global Non-Linear Analysis. Benjamin, New York (1968)zbMATHGoogle Scholar
  33. 33.
    Portegies, J.W.: Embeddings of Riemannian manifolds with heat kernels and eigenfunctions. Commun. Pure Appl. Math. (2015). arXiv:1311.7568 [math.DG]
  34. 34.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  35. 35.
    Singer, A., Coifman, R.R.: Non-linear independent component analysis with diffusion maps. Appl. Comput. Harmon. Anal. 25(2), 226–239 (2008)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Singer, A., Wu, H.-T.: Orientability and diffusion map. Appl. Comput. Harmon. Anal. 31(1), 44–58 (2011)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Singer, A., Wu, H.-T.: Vector diffusion maps and the connection Laplacian. Commun. Pure Appl. Math. 65(8), 1067–1144 (2012)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Singer, A., Wu, H.-T.: 2-d tomography from noisy projections taken at unknown random directions. SIAM J. Imaging Sci. 6(1), 136–175 (2013)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Singer, A., Wu, H.-T.: Spectral convergence of the connection Laplacian from random samples. Inf. Inference J. IMA 6(1), 58–123 (2017)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Singer, A., Zhao, Z., Shkolnisky, Y., Hadani, R.: Viewing angle classification of cryo-electron microscopy images using eigenvectors. SIAM J. Imaging Sci. 4(2), 723–759 (2011)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Talmon, R., Coifman, R.R.: Empirical intrinsic geometry for intrinsic modeling and nonlinear filtering. Proc. Nat. Acad. Sci. 110(31), 12535–12540 (2013)CrossRefGoogle Scholar
  42. 42.
    Talmon, R., Wu, H.-T.: Latent common manifold learning with alternating diffusion: Analysis and applications. Appl. Comput. Harmon. Anal. (2018).
  43. 43.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  44. 44.
    Wang, C.: The calderón–zygmund inequality on a compact Riemannian manifold. Pac. J. Math. 217(1), 181–200 (2004)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Wang, X., Zhu, K.: Isometric embeddings via heat kernel. J. Differ. Geom. 99, 497–538 (2015)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Whitney, H.: The singularities of a smooth n-manifold in \((2n-1)\)-space. Ann. Math. 45, 247–293 (1944)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wu, H.-T.: Embedding Riemannian Manifolds by the heat kernel of the connection Laplacian. Adv. Math. 304(2), 1055–1079 (2017)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Wu, H.-T., Wu, N.: Think globally, fit locally under the Manifold Setup: asymptotic analysis of locally linear embedding. Ann. Stat. (2018) (in press)Google Scholar
  49. 49.
    Zhao, Z., Singer, A.: Rotationally invariant image representation for viewing direction classification in cryo-EM. J. Struct. Biol. 186(1), 153–166 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsDuke UniversityDurhamUSA
  2. 2.Department of Mathematics and Department of Statistical ScienceDuke UniversityDurhamUSA

Personalised recommendations