Advertisement

An integrable example of gradient flow based on optimal transport of differential forms

  • Yann Brenier
  • Xianglong Duan
Article
  • 97 Downloads

Abstract

Optimal transport theory has been a powerful tool for the analysis of parabolic equations viewed as gradient flows of volume forms (or, in other words, 0-currents) according to suitable transportation metrics. In this paper, we present an example of gradient flow for closed \((d-1)\)-differential forms, or, more appropriately, to closed 1-currents, which can be identified to divergence-free vector fields, in the Euclidean space \(\mathbb {R}^d\). In spite of its apparent complexity, the resulting very degenerate parabolic system is fully integrable and can be viewed, in a suitable sense, as an Eulerian version of the heat equation for loops in the Euclidean space. We analyze this system in terms of “relative entropy” and “dissipative solutions” and provide global existence and weak–strong uniqueness results.

Keywords

Optimal transportation Gradient flow Differential forms Dissipative solutions Relative entropy 

Mathematics Subject Classification

49Q20 58A10 35K55 

Notes

Acknowledgements

This work has been partly supported by the ANR contract ISOTACE. The first author is grateful to the Erwin Schrödinger Institute for its hospitality during the first stage of this work. He also thanks the INRIA team MOKAPLAN where the work was partly completed.

References

  1. 1.
    Alberti, G., Marchese, A.: On the differentiability of Lipschitz functions. Geom. Funct. Anal. 26, 1–66 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, Birkhäuser, Basel (2008)Google Scholar
  3. 3.
    Brenier, Y.: Convergence of the Vlasov–Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equ. 25, 737–754 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brenier, Y.: Topology preserving diffusion of divergence-free vector fields. Commun. Math. Phys. 330, 757–770 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brenier, Y., De Lellis, C., Székelyhidi Jr., L.: Weak–strong uniqueness for measure-valued solutions. Commun. Math. Phys. 305, 351–361 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brenier, Y., Duan, X.: From conservative to dissipative systems by quadratic change of time with application to the curve-shortening flow. preprint arXiv:1703.03404
  7. 7.
    Brenier, Y., Gangbo, W., Savaré, G., Westdickenberg, M.: Sticky particle dynamics with interactions. J. Math. Pures Appl. 9, 577–617 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bresch, D., Gisclon, M., Lacroix-Violet, I.: On Navier–Stokes–Korteweg and Euler–Korteweg systems: application to quantum fluids models. arXiv:1703.09460
  9. 9.
    Csato, G., Dacorogna, B., Kneuss, O.: The Pullback Equation for Differential Forms. Birkhäuser, Basel (2012)CrossRefGoogle Scholar
  10. 10.
    Dacorogna, B., Gangbo, W.: Transportation of closed differential forms with non-homogeneous convex costs. Calc. Var. 57, 108 (2018).  https://doi.org/10.1007/00526-018-1376-0 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dacorogna, B., Gangbo, W., Kneuss, O.: Optimal transport of closed differential forms for convex costs. C. R. Math. Acad. Sci. Paris 353, 1099–1104 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000)CrossRefGoogle Scholar
  13. 13.
    Demengel, F., Temam, R.: Convex functions of a measure and applications. Indiana Univ. Math. J. 33, 673–709 (1984)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Demoulini, S., Stuart, D., Tzavaras, A.: Weak–strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Arch. Ration. Mech. Anal. 205, 927–961 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Evans, L.C., Gangbo, W., Savin, O.: Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal. 37, 737–751 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Springer, Berlin (2009)CrossRefGoogle Scholar
  17. 17.
    Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jüngel, A.: Entropy Methods for Diffusive Partial Differential Equations. Springer, Berlin (2016)CrossRefGoogle Scholar
  19. 19.
    Kwon, Y.-S., Vasseur, A.: Asymptotic limit to a shock for BGK models using relative entropy method. Nonlinearity 28, 531–543 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lattanzio, C., Tzavaras, A.: Relative entropy in diffusive relaxation. SIAM J. Math. Anal. 45, 1563–1584 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lions, P.-L.: Mathematical topics in fluid mechanics, Vol. 1. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications 3 (1996)Google Scholar
  22. 22.
    Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rezakhanlou, F.: Optimal Transport Problem and Contact Structures (2015). see https://math.berkeley.edu/rezakhan/42optimalcontact.pdf
  24. 24.
    Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation, vol 1971. Lecture Notes in Mathematics. Springer, New York (2009)Google Scholar
  25. 25.
    Santambrogio, F.: Optimal Transport for Applied Mathematicians. Birkhäuser/Springer, Basel (2015)CrossRefGoogle Scholar
  26. 26.
    Smirnov, S.K.: Decomposition of solenoidal vector charges. St. Petersburg Math. J. 5, 841–867 (1994)MathSciNetGoogle Scholar
  27. 27.
    Villani, C.: Optimal Transport: Old and New, p. 2008. Springer, New York (2008)Google Scholar
  28. 28.
    Vorotnikov, D.: Global generalized solutions for Maxwell-alpha and Euler-alpha equations. Nonlinearity 25, 309–327 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS UMR 7640Ecole PolytechniquePalaiseauFrance

Personalised recommendations