Variational methods for the selection of solutions to an implicit system of PDE

Article

Abstract

We consider the vectorial system
$$\begin{aligned} {\left\{ \begin{array}{ll} Du \in \mathcal {O}(2), &{} \text{ a.e. } \text{ in }\,\;\Omega , \\ u=0, &{} \text{ on } \,\;\partial \Omega , \end{array}\right. } \end{aligned}$$
where \(\Omega \) is a subset of \(\mathbb R^2\), \(u:\Omega \rightarrow \mathbb R^2\) and \(\mathcal {O}(2)\) is the orthogonal group of \(\mathbb R^2\). We provide a variational method to select, among the infinitely many solutions, the ones that minimize an appropriate weighted measure of some set of singularities of the gradient.

Mathematics Subject Classification

34A60 35A15 35F30 49J40 49Q15 

References

  1. 1.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, xviii+434 pp. Oxford University Press, New York (2000)Google Scholar
  2. 2.
    Bellettini, G., Dacorogna, B., Fusco, G., Leonetti, F.: Qualitative properties of Lipschitz solutions of eikonal type systems. Adv. Math. Sci. Appl. 16(1), 259–274 (2006)MathSciNetMATHGoogle Scholar
  3. 3.
    Cardaliaguet, P., Dacorogna, B., Gangbo, W., Georgy, N.: Geometric restrictions for the existence of viscosity solutions. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(2), 189–220 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cellina, A.: On minima of a functional of the gradient: necessary conditions. Nonlinear Anal. 20(4), 337–341 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cellina, A.: On minima of a functional of the gradient: sufficient conditions. Nonlinear Anal. 20(4), 343–347 (1993)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cellina, A., Perrotta, S.: On a problem of potential wells. J. Convex Anal. 2(1–2), 103–115 (1995)MathSciNetMATHGoogle Scholar
  7. 7.
    Congedo, G., Tamanini, I.: On the existence of solutions to a problem in multidimensional segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(2), 175–195 (1991)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Congedo, G., Tamanini, I.: Problemi di partizioni ottimali con dati illimitati. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4(2), 103–108 (1993)MathSciNetGoogle Scholar
  9. 9.
    Crandall, G.M., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Croce, G., Champion, T.: A particular class of solutions of a system of Eikonal equations. Adv. Math. Sci. Appl. 16(2), 377–392 (2006)MathSciNetMATHGoogle Scholar
  11. 11.
    Croce, G., Pisante, G.: A selection criterion of solutions to a system of eikonal equations. Adv. Calc. Var. 4(3), 309–338 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dacorogna, B., Marcellini, P.: General existence theorems for Hamilton–Jacobi equations in the scalar and vectorial cases. Acta Math. 178(1), 1–37 (1997)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dacorogna, B., Marcellini, P.: Viscosity solutions, almost everywhere solutions and explicit formulas. Trans. Am. Math. Soc. 356(11), 4643–4653 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dacorogna, B., Marcellini, P.: Implicit Partial Differential Equations. Springer, Boston (2012)MATHGoogle Scholar
  15. 15.
    Dacorogna, B., Marcellini, P., Paolini, E.: An explicit solution to a system of implicit differential equations. Ann. l’Inst. Henri Poincaré (C) Non Linear Anal. 25(1), 163–171 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162(2), 101–135 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions, Revised edition. Textbooks in Mathematics, xiv+299 pp. CRC Press, Boca Raton, FL (2015)Google Scholar
  18. 18.
    Falconer, K.J.: The geometry of fractal sets. Cambridge Tracts in Mathematics, 85, xiv+162 pp. Cambridge University Press, Cambridge (1986)Google Scholar
  19. 19.
    Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153, xiv+676 pp. Springer-Verlag New York Inc., New York (1969)Google Scholar
  20. 20.
    Giacomini, A.: A generalization of Golab’s theorem and applications to fracture mechanics. Math. Models Methods Appl. Sci. 12(9), 1245–1267 (2002)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Krantz, S.G., Parks, H.R.: The Geometry of Domains in Space. Birkhäuser, Boston (1999)CrossRefMATHGoogle Scholar
  22. 22.
    Müller, S., Šverák, V.: Attainment results for the two-well problem by convex integration (English summary). Geometric analysis and the calculus of variations, pp. 239–251. Int. Press, Cambridge, MA (1996)Google Scholar
  23. 23.
    Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1(4), 393–422 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Müller, S., Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. (2) 157(3), 715–742 (2003)Google Scholar
  25. 25.
    Pisante, G.: Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians. SIAM J. Math. Anal. 36(1), 186–203 (2004)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Rogers, C.A.: Hausdorff Measures. Reprint of the 1970 original. With a foreword by K. J. Falconer, xxx+195 pp. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Normandie UnivUNIHAVRE, LMAH, FR-CNRS-3335Le HavreFrance
  2. 2.Dipartimento di Matematica e FisicaUniversità degli Studi della Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations