Spectral density estimates with partial symmetries and an application to Bahri–Lions-type results

  • Nils Ackermann
  • Alfredo Cano
  • Eric Hernández-Martínez


We are concerned with the existence of infinitely many solutions for the problem \(-\Delta u=|u|^{p-2}u+f\) in \(\Omega \), \(u=u_0\) on \(\partial \Omega \), where \(\Omega \) is a bounded domain in \(\mathbb {R}^N\), \(N\ge 3\). This can be seen as a perturbation of the problem with \(f=0\) and \(u_0=0\), which is odd in u. If \(\Omega \) is invariant with respect to a closed strict subgroup of O(N), then we prove infinite existence for all functions f and \(u_0\) in certain spaces of invariant functions for a larger range of exponents p than known before. In order to achieve this, we prove Lieb–Cwikel–Rosenbljum-type bounds for invariant potentials on \(\Omega \), employing improved Sobolev embeddings for spaces of invariant functions.


  1. 1.
    Bahri, A., Lions, P.L.: Morse index of some min-max critical points. I. Application to multiplicity results. Commun. Pure Appl. Math. 41(8), 1027–1037 (1988). doi:10.1002/cpa.3160410803
  2. 2.
    Tanaka, K.: Morse indices at critical points related to the symmetric mountain pass theorem and applications. Commun. Partial Differ. Equ. 14(1), 99–128 (1989). doi:10.1080/03605308908820592
  3. 3.
    Bahri, A., Berestycki, H.: A perturbation method in critical point theory and applications. Trans. Am. Math. Soc. 267(1), 1–32 (1981). doi:10.2307/1998565
  4. 4.
    Rabinowitz, P.H.: Multiple critical points of perturbed symmetric functionals. Trans. Am. Math. Soc. 272(2), 753–769 (1982). doi:10.2307/1998726 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Struwe, M.: Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems. Manuscr. Math. 32(3–4), 335–364 (1980). doi:10.1007/BF01299609 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bahri, A.: Topological results on a certain class of functionals and application. J. Funct. Anal. 41(3), 397–427 (1981). doi:10.1016/0022-1236(81)90083-5 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bartolo, R., Candela, A.M., Salvatore, A.: Infinitely many solutions for a perturbed Schrödinger equation. Discrete Contin. Dyn. Syst. (Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl.), 94–102 (2015). doi:10.3934/proc.2015.0094
  8. 8.
    Hirano, N., Zou, W.: A perturbation method for multiple sign-changing solutions. Calc. Var. Partial Differ. Equ. 37(1–2), 87–98 (2010). doi:10.1007/s00526-009-0253-2 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Li, Y., Liu, Z., Zhao, C.: Nodal solutions of a perturbed elliptic problem. Topol. Methods Nonlinear Anal. 32(1), 49–68 (2008)MathSciNetMATHGoogle Scholar
  10. 10.
    Li, S., Liu, Z.: Perturbations from symmetric elliptic boundary value problems. J. Differ. Equ. 185(1), 271–280 (2002). doi:10.1006/jdeq.2001.4160 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Magrone, P., Mataloni, S.: Multiple solutions for perturbed indefinite semilinear elliptic equations. Adv. Differ. Equ. 8(9), 1107–1124 (2003)MathSciNetMATHGoogle Scholar
  12. 12.
    Tarsi, C.: Perturbation from symmetry and multiplicity of solutions for elliptic problems with subcritical exponential growth in \(\mathbb{R}^2\). Commun. Pure Appl. Anal. 7(2), 445–456 (2008). doi:10.3934/cpaa.2008.7.445 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Tehrani, H.T.: Infinitely many solutions for indefinite semilinear elliptic equations without symmetry. Commun. Partial Differ. Equ. 21(3–4), 541–557 (1996)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Li, Y.Y.: Existence of infinitely many critical values of some nonsymmetric functionals. J. Differ. Equ. 95(1), 140–153 (1992). doi:10.1016/0022-0396(92)90046-P MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Salvatore, A.: Multiple solutions for perturbed elliptic equations in unbounded domains. Adv. Nonlinear Stud. 3(1), 1–23 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bolle, P., Ghoussoub, N., Tehrani, H.: The multiplicity of solutions in non-homogeneous boundary value problems. Manuscr. Math. 101(3), 325–350 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Candela, A.M., Salvatore, A.: Multiplicity results of an elliptic equation with non-homogeneous boundary conditions. Topol. Methods Nonlinear Anal. 11(1), 1–18 (1998)MathSciNetMATHGoogle Scholar
  18. 18.
    Struwe, M.: Superlinear elliptic boundary value problems with rotational symmetry. Arch. Math. (Basel) 39(3), 233–240 (1982). doi:10.1007/BF01899529 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Castro, A., Kurepa, A.: Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball. Proc. Am. Math. Soc. 101(1), 57–64 (1987). doi:10.2307/2046550 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kazdan, J.L., Warner, F.W.: Remarks on some quasilinear elliptic equations. Commun. Pure Appl. Math. 28(5), 567–597 (1975)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Candela, A.M., Palmieri, G., Salvatore, A.: Radial solutions of semilinear elliptic equations with broken symmetry. Topol. Methods Nonlinear Anal. 27(1), 117–132 (2006)MathSciNetMATHGoogle Scholar
  22. 22.
    Barile, S., Salvatore, A.: Multiplicity results for some perturbed elliptic problems in unbounded domains with non-homogeneous boundary conditions. Nonlinear Anal. 110, 47–60 (2014). doi:10.1016/j.na.2014.07.018 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Barile, S., Salvatore, A.: Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Discrete Contin. Dyn. Syst. (Dynamical systems, differential equations and applications. 9th AIMS Conference. Suppl.), 41–49 (2013). doi:10.3934/proc.2013.2013.41
  24. 24.
    Clapp, M., Hernández-Martínez, E.: Infinitely many solutions of elliptic problems with perturbed symmetries in symmetric domains. Adv. Nonlinear Stud. 6(2), 309–322 (2006)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Brüning, J., Heintze, E.: Representations of compact Lie groups and elliptic operators. Invent. Math. 50(2), 169–203 (1978/1979). doi:10.1007/BF01390288
  26. 26.
    Donnelly, H.: \(G\)-spaces, the asymptotic splitting of \(L^{2}(M)\) into irreducibles. Math. Ann. 237(1), 23–40 (1978). doi:10.1007/BF01351556
  27. 27.
    Barile, S., Salvatore, A.: Multiplicity results for some perturbed and unperturbed “zero mass” elliptic problems in unbounded cylinders. In: Analysis and Topology in Nonlinear Differential Equations, Progr. Nonlinear Differential Equations Appl., vol. 85, pp. 39–59. Birkhäuser/Springer, Cham (2014)Google Scholar
  28. 28.
    Bolle, P.: On the Bolza problem. J. Differ. Equ. 152(2), 274–288 (1999)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Li, P., Yau, S.T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88(3), 309–318 (1983). http://projecteuclid.org/getRecord?id=euclid.cmp/1103922378
  30. 30.
    Blanchard, P., Stubbe, J., Rezende, J.: New estimates on the number of bound states of Schrödinger operators. Lett. Math. Phys. 14(3), 215–225 (1987). doi:10.1007/BF00416851
  31. 31.
    Hebey, E., Vaugon, M.: Sobolev spaces in the presence of symmetries. J. Math. Pures Appl. (9) 76(10), 859–881 (1997). doi:10.1016/S0021-7824(97)89975-8 MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Wang, W.: Sobolev embeddings involving symmetry. Bull. Sci. Math. 130(4), 269–278 (2006). doi:10.1016/j.bulsci.2005.05.004 MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Lieb, E.: Bounds on the eigenvalues of the Laplace and Schroedinger operators. Bull. Am. Math. Soc. 82(5), 751–753 (1976)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. (2) 106(1), 93–100 (1977)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Rosenbljum, G.: Distribution of the discrete spectrum of singular differential operators. Sov. Math. Dokl. 13, 245–249 (1972)Google Scholar
  36. 36.
    Bargmann, V.: On the number of bound states in a central field of force. Proc. Natl. Acad. Sci. USA 38, 961–966 (1952)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Schmidt, K.M.: A short proof for Bargmann-type inequalities. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2027), 2829–2832 (2002). doi:10.1098/rspa.2002.1021 MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Clapp, M., Hernández-Linares, S., Hernández-Martínez, E.: Linking-preserving perturbations of symmetric functionals. J. Differ. Equ. 185(1), 181–199 (2002). doi:10.1006/jdeq.2002.4170
  39. 39.
    Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1986)Google Scholar
  40. 40.
    Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc., New York (1991)Google Scholar
  41. 41.
    Davies, E.B.: Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989). doi:10.1017/CBO9780511566158
  42. 42.
    König, H.: Eigenvalue distribution of compact operators, Operator Theory: Advances and Applications, vol. 16. Birkhäuser Verlag, Basel (1986). doi:10.1007/978-3-0348-6278-3
  43. 43.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, 2nd edn. Springer, Berlin (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nils Ackermann
    • 1
  • Alfredo Cano
    • 2
  • Eric Hernández-Martínez
    • 3
  1. 1.Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoMexico, D.F.Mexico
  2. 2.Facultad de CienciasUniversidad Autónoma del Estado de MéxicoTolucaMexico
  3. 3.Universidad Autónoma de la Ciudad de MéxicoMexico, D.F.Mexico

Personalised recommendations