Multi-bump solutions for Choquard equation with deepening potential well

  • Claudianor O. Alves
  • Alânnio B. Nóbrega
  • Minbo Yang


In this paper we study the existence of multi-bump solutions for the following Choquard equation
$$\begin{aligned} \begin{array}{ll} -\Delta u + (\lambda a(x)+1)u=\displaystyle \big (\frac{1}{|x|^{\mu }}*|u|^p\big )|u|^{p-2}u \text{ in } \,\,\, \mathbb {R}^3, \end{array} \end{aligned}$$
where \(\mu \in (0,3), p\in (2, 6-\mu )\), \(\lambda \) is a positive parameter and the nonnegative continuous function a(x) has a potential well \( \Omega :=int (a^{-1}(0))\) which possesses k disjoint bounded components \( \Omega :=\cup _{j=1}^{k}\Omega _j\). We prove that if the parameter \(\lambda \) is large enough, then the equation has at least \(2^{k}-1\) multi-bump solutions.

Mathematics Subject Classification

35J20 35J65 



The authors would like to thank the anonymous referee for his/her useful comments and suggestions which help to improve and clarify the paper greatly.


  1. 1.
    Alves, C.O.: Existence of multi-bump solutions for a class of quasilinear problems. Adv. Nonlinear Stud. 6, 491–509 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alves, C.O., Nóbrega, A.B.: Existence of multi-bump solutions for a class of elliptic problems involving the biharmonic operator. arXiv:1602.03112v1 (2016)
  3. 3.
    Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R}}^N\). Comm. Part. Diff. Equ. 20, 1725–1741 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bartsch, T., Wang, Z.Q.: Multiple positive solutions for a nonlinear Schrödinger equations. Z. Angew. Math. Phys. 51, 366–384 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–346 (1983)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Buffoni, B., Jeanjean, L., Stuart, C.A.: Existence of a nontrivial solution to a strongly indefinite semilinear equation. Proc. Am. Math. Soc. 119, 179–186 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Coti Zelati, V., Rabinowitz, R.: Homoclinic type solutions for semilinear elliptic PDE on \({\mathbb{R}}^n\). Comm. Pure. Appl. Math. 45(10), 1217–1269 (1992)Google Scholar
  10. 10.
    Clapp, M., Ding, Y.H.: Minimal nodal solutions of a Schrödinger equation with critical nonlinearity and symmetric potential. Diff. Int. Equ. 16, 981–992 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Clapp, M., Salazar, D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407, 1–15 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    del Pino, M., Felmer, P.: Multipeak bound states of nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 127–149 (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    del Pino, M., Felmer, P.: Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ding, Y., Tanaka, K.: Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manus. Math. 112, 109–135 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ding, Y., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29, 397–419 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Floer, A., Weinstein, A.: Nonspreading wave pachets for the packets for the cubic Schrödinger with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ghimenti, M., Van Schaftingen, J.: Nodal solutions for the Choquard equation. J. Funct. Anal. 271(1), 107–135 (2016)Google Scholar
  19. 19.
    Ghimenti, M., Moroz, V., Van Schaftingen, J.: Least Action nodal solutions for ghe quadratic Choquard equation. arXiv:1511.04779v1 (2015)
  20. 20.
    Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976/1977)Google Scholar
  21. 21.
    Lieb, E., Loss, M.: Analysis. Gradute Studies in Mathematics, AMS, Providence, Rhode island (2001)Google Scholar
  22. 22.
    Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, G.B.: Some properties of weak solutions of nonlinear scalar field equations. Ann. Acad. Sci. Fenn. Math. 14, 27–36 (1989)CrossRefGoogle Scholar
  24. 24.
    Miranda, C.: Un’ osservazione su un teorema di Brouwer. Bol. Un. Mat. Ital. 3, 5–7 (1940)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Moroz, V., Van Schaftingen, J.: Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)Google Scholar
  28. 28.
    Moroz, V., Van Schaftingen, J.: Semi-classical states for the Choquard equation. Calc. Var. Partial Differ. Equ. 52, 199–235 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math. 17(5), 1550005, 12 (2015)Google Scholar
  30. 30.
    Pekar, S.: Untersuchungüber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)zbMATHGoogle Scholar
  31. 31.
    Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravitat. 28, 581–600 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Stuart, C.A., Zhou, H.S.: Global branch of solutions for non-linear Schrödinger equations with deepening potential well. Proc. Lond. Math. Soc. 92, 655–681 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sato, Y., Tanaka, K.: Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells. Trans. Am. Math. Soc. 361, 6205–6253 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Secchi, S.: A note on Schrödinger-Newton systems with decaying electric potential. Nonlinear Anal. 72, 3842–3856 (2010)Google Scholar
  35. 35.
    Séré, E.: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209, 27–42 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Wang, Z.P., Zhou, H.S.: Positive solutions for nonlinear Schrödinger equations with deepening potential well. J. Eur. Math. Soc. (JEMS) 11, 545–573 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Wei, J., Winter, M.: Strongly Interacting Bumps for the Schrödinger-Newton Equations. J. Math. Phys. 50, 012905 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Willem, M.: Minimax Theorems, Birkhäuser (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Claudianor O. Alves
    • 1
  • Alânnio B. Nóbrega
    • 1
  • Minbo Yang
    • 2
  1. 1.Universidade Federal de Campina GrandeUnidade Acadêmica de MatemáticaCampina GrandeBrazil
  2. 2.Department of MathematicsZhejiang Normal UniversityJinhuaPeople’s Republic of China

Personalised recommendations