Advertisement

On the derivation of homogenized bending plate model

  • Igor VelčićEmail author
Article

Abstract

We derive, via simultaneous homogenization and dimension reduction, the \(\Gamma \)-limit for thin elastic plates of thickness \(h\) whose energy density oscillates on a scale \(\varepsilon (h)\) such that \( \varepsilon (h)^2 \ll h\ll \varepsilon (h)\). We consider the energy scaling that corresponds to Kirchhoff’s nonlinear bending theory of plates.

Mathematics Subject Classification

35B27 49J45 74E30 74Q05 

Notes

Acknowledgments

The work on this paper was mainly done while the author was affiliated with Peter Hornung’s group in Max Planck Institute for Mathematics in the Sciences in Leipzig, Germany. The author was supported by Deutsche Forschungsgemeinschaft grant no. HO-4697/1-1.

References

  1. 1.
    Acerbi, E., Buttazzo, G., Percivale, D.: A variational definition of the strain energy for an elastic string. J. Elast. 25(2), 137–148 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Attouch, H.: Variational convergence for functions and operators. Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston (1984)Google Scholar
  4. 4.
    Ciarlet, P.G.: Mathematical elasticity. Vol. I, volume 20 of Studies in Mathematics and its Applications. Three-dimensional elasticity. North-Holland Publishing Co., Amsterdam (1988)Google Scholar
  5. 5.
    Ciarlet, P.G.: Mathematical elasticity. Vol. II, volume 27 of Studies in Mathematics and its Applications. Theory of plates. North-Holland Publishing Co., Amsterdam (1997)Google Scholar
  6. 6.
    Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55(11), 1461–1506 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hornung, P.: Approximation of flat \(W^{2,2}\) isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199(3), 1015–1067 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Hornung, P., Neukamm, S., Velčić, I.: Derivation of the homogenized bending plate model from 3D nonlinear elasticity. Accepted in Calculus of Variations, Partial Differential EquationsGoogle Scholar
  10. 10.
    Hornung, P., Velčić, I.: Derivation of the homogenized von kármán shell model from 3D nonlinear elasticity. accepted in Ann. Inst. H. Poincar T Anal. Nonlin. doi: 10.1016/j.anihpc.2014.05.003
  11. 11.
    Le Dret, H., Raoult, A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 9 74(6), 549–578 (1995)Google Scholar
  12. 12.
    Lewicka, M., Mora, M.G., Pakzad, M.R.: Shell theories arising as low energy \(\Gamma \)-limit of 3d nonlinear elasticity. Ann. Sci. Norm. Super. Pisa Cl. Sci. 5 9(2), 253–295 (2010)Google Scholar
  13. 13.
    Mielke, A., Timofte, A.M.: Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. 39(2), 642–668 (electronic) (2007)Google Scholar
  14. 14.
    Neukamm, S.: Homogenization, linearization and dimension reduction in elasticity with variational methods. Ph.D. thesis, Tecnische Universität München (2010)Google Scholar
  15. 15.
    Neukamm, S.: Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from three-dimensional elasticity. Arch. Ration. Mech. Anal. 206(2), 645–706 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Neukamm, S., Olbermann, H.: Homogenization of the nonlinear bending theory of plates. Preprint http://www.mis.mpg.de/preprints/2013/preprint2013_40.pdf
  17. 17.
    Neukamm, S., Velčić, I.: Derivation of a homogenized von Kármán plate theory from 3D elasticity. M3AS 23(14), 2701–2748 (2013)Google Scholar
  18. 18.
    Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69 (2004)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Schmidt, B.: Plate theory for stressed heterogeneous multilayers of finite bending energy. J. Math. Pures Appl. 9 88(1), 107–122 (2007)Google Scholar
  21. 21.
    Velčić, I.: On the general homogenization and \(\gamma \)-closure for the equations of von kármán plate. Preprint http://www.mis.mpg.de/preprints/2013/preprint2013_61.pdf
  22. 22.
    Velčić, I.: Periodically wrinkled plate of Föppl von Kármán type. Ann. Sci. Norm. Super. Pisa Cl. Sci. 5 12(2), 275–307 (2013)Google Scholar
  23. 23.
    Visintin, A.: Towards a two-scale calculus. ESAIM Control Optim. Calc. Var. 12(3), 371–397 (electronic) (2006)Google Scholar
  24. 24.
    Visintin, A.: Two-scale convergence of some integral functionals. Calc. Var. Partial Differ. Equ. 29(2), 239–265 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations