Advertisement

Spinning Q-balls in Abelian Gauge Theories with positive potentials: existence and non existence

  • Dimitri MugnaiEmail author
  • Matteo Rinaldi
Article

Abstract

We study the existence of cylindrically symmetric electro-magneto-static solitary waves for a system of a nonlinear Klein–Gordon equation coupled with Maxwell’s equations in presence of a positive mass and of a nonnegative nonlinear potential. Nonexistence results are provided as well.

Mathematics Subject Classification (2000)

35J50 81T13 35Q40 

References

  1. 1.
    Axenides, M., Floratos, E., Komineas, S., Perivolaropoulos, L.: Q-rings. Phys. Rev. Lett. 86, 4459–4462 (2001)CrossRefGoogle Scholar
  2. 2.
    Azzolini, A., Pomponio, A.: Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations. Topol. Methods Nonlinear Anal. 35, 33–42 (2010)Google Scholar
  3. 3.
    Benci, V., Fortunato, D.: Existence of hylomorphic solitary waves in Klein-Gordon and in Klein-Gordon- Maxwell equations. Rend. Accad. Naz. Lincei, Mat. Appl. 20, 243–279 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Benci, V., Fortunato, D.: Spinning Q-balls for the Klein-Gordon-Maxwell equations. Commun. Math. Phys. 295, 639–668 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Benci, V., Fortunato, D.: Three dimensional vortices in Abelian Gauge Theories. Nonlinear Anal. 70, 4402–4421 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Benci, V., Fortunato, D.: Towards a unified field theory for classical electrodynamics. Arch. Ration. Mech. Anal. 173, 379–414 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I. existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Brihaye, Y., Hartmann, B.: Interacting Q-balls. Nonlinearity 21, 1937–1952 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Coleman, S.: Q-balls. Nucl. Phys. B262, 263–283 (1985). (erratum: B269, 744–745)CrossRefGoogle Scholar
  12. 12.
    D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4(3), 307–322 (2004)zbMATHMathSciNetGoogle Scholar
  13. 13.
    D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134, 1–14 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, London (1982)zbMATHGoogle Scholar
  15. 15.
    Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Esteban, M., Georgiev, V., Sere, E.: Stationary waves of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. Calc. Var. Partial Differ. Equ. 4, 265–281 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Esteban, M., Lions, P.L.: A compactness lemma. Nonlinear Anal. 7, 381–385 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Felsager, B.: Geometry, particles and fields. Odense University Press, Odense (1981)zbMATHGoogle Scholar
  19. 19.
    Kleihaus, B., Kunz, J., List, M.: Rotating boson stars and Q-balls. Phys. Rev. D 72, 064002 (2005)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kleihaus, B., Kunz, J., List, M., Schaffer, I.: Rotating boson stars and Q-balls. II. Negative parity and ergoregions. Phys. Rev. D 77, 064025 (2008)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Klainerman, S., Machedon, M.: On the Maxwell-Klein-Gordon equation with finite energy. Duke Math. J. 74(1), 19–44 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Lee, K., Stein-Schabes, J.A., Watkins, R., Widrow, L.M.: Gauged \(Q\) balls. Phys. Rev. D 39(6), 1665–1673 (1989)CrossRefGoogle Scholar
  23. 23.
    Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112(1), 147–174 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 2, 109–145 (1984)Google Scholar
  25. 25.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 4, 223–283 (1984)Google Scholar
  26. 26.
    Long, E.: Existence and stability of solitary waves in non-linear Klein-Gordon-Maxwell equations. Rev. Math. Phys. 18, 747–779 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Machedon, M., Sterbenz, J.: Almost optimal local well-posedness for the \((3+1)\)-dimensional Maxwell-Klein-Gordon equations. J. Am. Math. Soc. 17(2), 297–359 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Mugnai, D.: Coupled Klein-Gordon and Born-Infeld type equations: looking for solitary waves. R. Soc. Lond. Proc. Ser. A 460, 1519–1528 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Mugnai, D.: Solitary waves in Abelian Gauge Theories with strongly nonlinear potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 1055–1071 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Mugnai, D.: The pseudorelativistic Hartree equation with a general nonlinearity: existence, non existence and variational identities. Adv. Nonlinear Stud. 13, 799–823 (2013)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Mugnai, D.: The Schrödinger-Poisson system with positive potential. Commun. Partial Differ. Equ. 36, 1099–1117 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Radu, E., Volkov, M.S.: Stationary ring solitons in field theory: knots and vortons. Phys. Rep. 468, 101–151 (2008)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Rajaraman, R.: Solitons and Instantons. North Holland, Amsterdam (1988)Google Scholar
  34. 34.
    Rodnianski, I., Tao, T.: Global regularity for the Maxwell-Klein-Gordon equation with small critical Sobolev norm in high dimensions. Commun. Math. Phys. 251(2), 377–426 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Rosen, G.: Particlelike solutions to nonlinear complex scalar field theories with positive-definite energy densities. J. Math. Phys. 9, 996–998 (1968)CrossRefGoogle Scholar
  36. 36.
    Selberg, S.: Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in 1+4 dimensions. Commun. Partial Differ. Equ. 27(5–6), 1183–1227 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)CrossRefzbMATHGoogle Scholar
  38. 38.
    Taubes, C.H.: On the Yang-Mills-Higgs equations. Bull. Am. Math. Soc. (N.S.) 10(2), 295–297 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Volkov, M.S., Wöhnert, E.: Spinning Q-balls. Phys. Rev. D 66, 9 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di PerugiaPerugiaItaly
  2. 2.Department of Mathematical SciencesCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations