The half space property for cmc 1/2 graphs in \(\mathbb {E}(-1,\tau )\)

  • Laurent MazetEmail author


In this paper, we prove a half-space theorem with respect to constant mean curvature 1/2 entire graphs in \(\mathbb {E}(-1,\tau )\). If \(\Sigma \) is such an entire graph and \(\Sigma '\) is a properly immersed constant mean curvature 1/2 surface included in the mean convex side of \(\Sigma \) then \(\Sigma '\) is a vertical translate of \(\Sigma \). We also have an equivalent statement for the non mean convex side of \(\Sigma \).

Mathematics Subject Classification



  1. 1.
    Cartier, S., Hauswirth, L.: Deformation of cmc-1/2 surfaces in \(\mathbb{H}^2\times \mathbb{R}\) with vertical ends at infinity. Comm. Anal. Geom. arXiv:1203.0760
  2. 2.
    Daniel, B.: Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math. Helv. 82, 87–131 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Daniel, B., Hauswirth, L.: Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group. Proc. Lond. Math. Soc. 3(98), 445–470 (2009)MathSciNetGoogle Scholar
  4. 4.
    Daniel, B., Meeks III, W.H., Rosenberg, H.: Half-space theorems for minimal surfaces in \({\text{ Nil }_3}\) and \({\text{ Sol }_3}\). J. Differ. Geom. 88, 41–59 (2011)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Espinar, J.M., de Oliveira, I.S.: Locally convex surfaces immersed in a Killing submersion, preprint. arXiv:1002.1329
  6. 6.
    Fernández, I., Mira, P.: Holomorphic quadratic differentials and the Bernstein problem in Heisenberg space. Trans. Am. Math. Soc. 361, 5737–5752 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hauswirth, L., Rosenberg, H., Spruck, J.: On complete mean curvature \(\frac{1}{2}\) surfaces in \(\mathbb{H}^2\times \mathbb{R}\). Comm. Anal. Geom. 16, 989–1005 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hoffman, D., Meeks III, W.H.: The strong halfspace theorem for minimal surfaces. Invent. Math. 101, 373–377 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Korevaar, N.: An easy proof of the interior gradient bound for solutions to the prescribed mean curvature equation. In: Nonlinear functional analysis and its applications, Part 2 (Berkeley, CA 1983), vol. 45 of proceedings of symposia in pure mathematics pp. 81–89, American Mathematical Society (1986)Google Scholar
  10. 10.
    Manzano, J.: On the classification of Killing submersions and their isometries. Pac. J. Math. arXiv:1211.2115
  11. 11.
    Mazet, L.: A general halfspace theorem for constant mean curvature surfaces. Am. J. Math. 135, 801–834 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Meeks III, W.H., Rosenberg, H.: Maximum principles at infinity. J. Differ. Geom. 79, 141–165 (2008)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Nelli, B., Sa Earp, R.: A halfspace theorem for mean curvature \(H=\frac{1}{2}\) surfaces in \(\mathbb{H}^2\times \mathbb{R}\). J. Math. Anal. Appl. 365, 167–170 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Peñafiel, C.: On \({H}=1/2\) surfaces in \(\widetilde{PSL}_2({\mathbb{R}})\), preprint. arXiv:1008.0879
  15. 15.
    Peñafiel, C.: Graphs and multi-graphs in homogeneous 3-manifolds with isometry groups of dimension 4. Proc. Am. Math. Soc. 140, 2465–2478 (2012)CrossRefzbMATHGoogle Scholar
  16. 16.
    Rodriguez, L., Rosenberg, H.: Half-space theorems for mean curvature one surfaces in hyperbolic space. Proc. Am. Math. Soc. 126, 2755–2762 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ros, A., Rosenberg, H.: Properly embedded surfaces with constant mean curvature. Am. J. Math. 132, 1429–1443 (2010)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Rosenberg, H., Schulze, F., Spruck, J.: The half-space property and entire positive minimal graphs in \({M}\times \mathbb{R}\). J. Differ. Geom. 95, 321–336 (2013)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Solomon, B.: On foliations of \(\mathbb{R}^{n+1}\) by minimal hypersurfaces. Comment. Math. Helv. 61, 67–83 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Spruck, J.: Interior gradient estimates and existence theorems for constant mean curvature graphs in \(M^n\times \mathbb{R}\). Pure Appl. Math. Q. 3, 785–800 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire d’Analyse et Mathématiques Appliquées, CNRS UMR8050, UFR des Sciences et TechnologieUniversité Paris-EstCréteil CedexFrance

Personalised recommendations