Advertisement

Multiple mixed states of nodal solutions for nonlinear Schrödinger systems

  • Jiaquan Liu
  • Xiangqing Liu
  • Zhi-qiang WangEmail author
Article

Abstract

In this paper we develop a general critical point theory to deal with existence and locations of multiple critical points produced by minimax methods in relation to multiple invariant sets of the associated gradient flow. The motivation is to study non-trivial nodal solutions with each component sign-changing for a class of nonlinear Schrödinger systems which arise from Bose–Einstein condensates theory. Our general method allows us to obtain infinitely many mixed states of nodal solutions for the repulsive case.

Mathematics Subject Classification

35A15 35J50 35J57 58J70 

Notes

Acknowledgments

The authors are grateful to the referee for a careful reading of the manuscript, clarifying some details and pointing out some references. J. Liu is supported by NSFC11171171 and 11271331, X. Liu is supported by NSFC11361077 and Young scholars program of Southwest Associated University, and Z.-Q. Wang is supported by NSFC11271201.

References

  1. 1.
    Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)Google Scholar
  2. 2.
    Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bartsch, T., Chang, K.-C., Wang, Z.-Q.: On the Morse indices of sign changing solutions of nonlinear elliptic problems. Math. Z. 233, 655–677 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37, 345–361 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bartsch, T., Liu, Z.: On a superlinear elliptic \(p\)-Laplacian equation. J. Differ. Equ. 198, 149–175 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bartsch, T., Liu, Z.L., Weth, T.: Sign changing solutions of superlinear Schröinger equations. Commun. Partial Differ. Equ. 29, 25–42 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bartsch, T., Liu, Z.L., Weth, T.: Nodal solutions of a p-Laplacian equation. Proc. Lond. Math. Soc. 91, 129–152 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bartsch, T., Wang, Z.-Q.: On the existence of sign changing solutions for semilinear Dirichlet problems. Topol. Methods Nonlinear Anal. 7, 115–131 (1996)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Bartsch, T., Wang, Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19, 200–207 (2006)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2, 353–367 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Canino, A., Degiovanni, M.: Nonsmooth critical point theory and quasilinear elliptic equations, Topol. methods in differential equations and inclusions (Montreal, PQ, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 472 (1995)Google Scholar
  12. 12.
    Chang, S., Lin, C.S., Lin, T.C., Lin, W.: Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates. Phys. D 196, 341–361 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Chang, K.C.: Infinite Dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and Their Applications, 6. Birkhäuser, Boston (1993)CrossRefGoogle Scholar
  14. 14.
    Chen, Z., Lin, C.-S., Zou, W.: Multiple sign-changing and semi-nodal solutions for coupled Schröinger equations. J. Differ. Equ. 255, 4289–4311 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Chen, Z., Lin, C.-S., Zou, W.: Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrodinger, system. arXiv:1212.3773
  16. 16.
    Conti, M., Merizzi, L., Terracini, S.: Remarks on variational methods and lower-upper solutions. Nonlinear Differ. Equ. Appl. 6, 371–393 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Dancer, E.N., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 953–969 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Esry, B.D., Greene, C.H., Burke Jr, J.P., Bohn, J.L.: Hartree–Fock theory for double condensates. Phys. Rev. Lett. 78, 3594–3597 (1997)CrossRefGoogle Scholar
  19. 19.
    Guo, Y., Liu, X.: A multiple critical points theorem and applications to quasilinear boundary value problems in \(\mathbb{R}^N_+ \). Nonlinear Anal. 75, 3787–3808 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Ioffe, A., Schwartzman, E.: Metric critical point theory 1. Morse regularity and homotopic stability of a minimum. J. Math. Pures Appl. 75, 125–153 (1996)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Katriel, G.: Mountain pass theorems and global homeomorphism theorems. Ann. Inst. H. Poincare Anal. Non Lineaire 11, 189–209 (1994)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Lin, T.-C., Wei, J.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \(\mathbb{R}^n, n\le 3\). Commun. Math. Phys. 255, 629–653 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Lin, T.-C., Wei, J.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 403–439 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Li, S., Wang, Z.-Q.: Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems. J. d’Analyse Math. 81, 373–396 (2000)CrossRefzbMATHGoogle Scholar
  25. 25.
    Li, S., Wang, Z.-Q.: Ljusternik–Schnirelman theory in partially ordered Hilbert spaces. Trans. Am. Math. Soc. 354, 3207–3227 (2002)CrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, Z., Sun, J.: Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J. Differ. Equ. 172, 257–299 (2001)CrossRefzbMATHGoogle Scholar
  27. 27.
    Liu, Z., Wang, Z.-Q.: Sign-changing solutions of nonlinear elliptic equations. Front. Math. China 3, 221–238 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Liu, Z., Wang, Z.-Q.: Multiple bound states of nonlinear Schrödinger systems. Commun. Math. Phys. 282, 721–731 (2008)CrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, Z., Wang, Z.-Q.: Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Studies 10, 175–193 (2010)zbMATHGoogle Scholar
  30. 30.
    Liu, Z., van Heerden, F., Wang, Z.-Q.: Nodal solutions for Schrödinger equations with asymptotically linear nonlinearities. J. Differ. Equ. 214, 358–390 (2005)CrossRefzbMATHGoogle Scholar
  31. 31.
    Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 299, 743–767 (2006)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Mitchell, M., Segev, M.: Self-trapping of inconherent white light. Nature 387, 880–882 (1997)CrossRefGoogle Scholar
  33. 33.
    Montefusco, E., Pellacci, B., Squassina, M.: Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc. 10, 41–71 (2008)MathSciNetGoogle Scholar
  34. 34.
    Noris, B., Ramos, M.: Existence and bounds of positive solutions for a nonlinear Schrödinger system. Proc. Am. Math. Soc. 138, 1681–1692 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Noris, B., Tavares, S., Terracini, H., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267–302 (2010)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., vol. 65. AMS, Providence (1986)Google Scholar
  37. 37.
    Sato, Y., Wang, Z.-Q.: On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincare Anal. Non Lineaire 30, 1–22 (2013)Google Scholar
  38. 38.
    Sirakov, S.: Least energy solitary waves for a system of nonlinear Schröinger equations in \(\mathbb{R}^n\). Commun. Math. Phys. 271, 199–221 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Tavares, H., Terracini, S.: Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems. Ann. Inst. H. Poincare Anal. Non Lineaire 29, 279–300 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Terracini, S., Verzini, G.: Multipulse phase in \(k\)-mixtures of Bose–Einstein condenstates. Arch. Ration. Mech. Anal. 194, 717–741 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Tian, R., Wang, Z.-Q.: Multiple solitary wave solutions of nonlinear Schrödinger systems. Topol. Methods Nonlinear Anal. 37, 203–223 (2011)zbMATHMathSciNetGoogle Scholar
  42. 42.
    Timmermans, E.: Phase seperation of Bose Einstein condensates. Phys. Rev. Lett. 81, 5718–5721 (1998)CrossRefGoogle Scholar
  43. 43.
    Wei, J., Weth, T.: Nonradial symmetric bound states for a system of two coupled Schrödinger equations. Rend. Lincei Mat. Appl. 18, 279–293 (2007)zbMATHMathSciNetGoogle Scholar
  44. 44.
    Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190, 83–106 (2008)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.LMAM, School of Mathematical SciencePeking UniversityBeijingPeople’s Republic of China
  2. 2.Department of MathematicsYunnan Normal UniversityKunmingPeople’s Republic of China
  3. 3.Chern Institute of Mathematics and LPMCNankai UniversityTianjinPeople’s Republic of China
  4. 4.Department of MathematicsUtah State UniversityLoganUSA

Personalised recommendations