Semiclassical limits of ground state solutions to Schrödinger systems

  • Yanheng Ding
  • Cheng Lee
  • Fukun Zhao


This paper is concerned with the existence and concentration properties of the ground state solutions to the following coupled Schrödinger systems
$$\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2\varDelta u+u+V(x)v=W(x)G_{v}(z)~\hbox { in }\ {\mathbb {R}}^N,\\ -\varepsilon ^2\varDelta v+v+V(x)u=W(x)G_{u}(z)~\hbox {in } \ {\mathbb {R}}^N,\\ u(x)\rightarrow 0\ \hbox {and }v(x)\rightarrow 0\ \hbox {as } \ |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$
$$\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2\varDelta u+u+V(x)v=W(x)(G_{v}(z)+|z|^{2^*-2}v)~\hbox {in } \ {\mathbb {R}}^N,\\ -\varepsilon ^2\varDelta v+v+V(x)u=W(x)(G_{u}(z)+|z|^{2^*-2}u)~\hbox {in } \ {\mathbb {R}}^N,\\ u(x)\rightarrow 0\ \hbox {and }v(x)\rightarrow 0\ \hbox {as } \ |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$
where \(z=(u,v)\in {\mathbb {R}}^2\), \(G\) is a power type nonlinearity, having superquadratic growth at both \(0\) and infinity but subcritical, \(V\) can be sign-changing and \(\inf W>0\). We prove the existence, exponential decay, \(H^2\)-convergence and concentration phenomena of the ground state solutions for small \(\varepsilon >0\).

Mathematics Subject Classification

35J50 58E05 



The authors would express their thanks to unknown referee for his/her careful reading and suggestions which improve the work. This work was completed during a visit by Y. Ding and F. Zhao to the Department of Mathematics of NCUE in Taiwan. They would like to thank NCUE for its hospitality and support. Also, the first author was supported by NSFC(11331010 and 10421001), China. The second author was supported by NSC(101-2115-M018-001). The corresponding author was supported by NSFC (11061040 and 11361078), Key Project of Chinese Ministry of Education (No212162) and NSFY of Yunnan Province (2011CI020), China.


  1. 1.
    Ackermann, N.: A superposition principle and multibump solutions of periodic Schrödinger equations. J. Funct. Anal. 234(2), 277–320 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alves, C.O., Carriao, P.C., Miyagaki, O.H.: On the existence of positive solutions of a perturbed Hamiltonian system in \({\mathbb{R}}^N\). J. Math. Anal. Appl. 276, 673–690 (2002)Google Scholar
  3. 3.
    Alves, C.O., Soares, S.H.M.: Singularly perturbed elliptic systems. Nonlinear Anal. 64, 109–129 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrodinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ávila, A.I., Yang, J.: On the existence and shape of least energy solutions for some elliptic systems. J. Differ. Equ. 191, 348–376 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Benci, V., Rabinowitz, P.H.: Critical point theorems for indefinite functionals. Invent. Math. 52, 241–273 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bonheure, D., dos Santos, E.M., Ramos, M.: Ground state and non-grounbd state solutions of some strongly coupled elliptic systems. Trans. Am. Math. Soc. 364, 477–491 (2012)CrossRefGoogle Scholar
  8. 8.
    Clément, P.H., de Fegueiredo, D.G., Mitedieri, E.: Positive solutions of semilinear elliptic systems. Commun. Partial Differ. Equ. 17, 923–940 (1992)Google Scholar
  9. 9.
    de Figueiredo, D.G.: Semilinear elliptic systems: existence, multiplicity, symmetry of solutions. Handbook of differential equations: stationary partial differential equations, vol. V, 1C48, Handb. Differ. Equ., Elsevier, North-Holland (2008)Google Scholar
  10. 10.
    de Figueiredo, D.G., Felmer, P.L.: On superquadratic elliptic systems. Trans. Am. Math. Soc. 343, 97–116 (1994)CrossRefGoogle Scholar
  11. 11.
    de Figueiredo, D.G., Yang, J.: Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal. 33, 211–234 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ding, Y.: Variational methods for strongly indefinite problems. Inerdisciplinary Math. Sci., vol. 7. World Scientific Publ., Singapore (2007)Google Scholar
  13. 13.
    Ding, Y., Lin, F.H.: Semiclassical states of Hamiltonian systems of Schrödinger equations with subcritical and critical nonlinearies. J. Partial Differ. Equ. 19, 232–255 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hulshof, J., Van der Vorst, R.C.A.M.: Differential systems with strongly variational structure. J. Funct. Anal. 114, 32–58 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kryszewski, W., Szulkin, A.: Generalized linking theorem with an application to semilinear Schrödinger equations. Adv. Differ. Equ. 3, 441–472 (1998)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Li, G., Yang, J.: Asymptotically linear elliptic systems. Commun. Partial Differ. Equ. 29, 925–954 (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lin, T.C., Wei, J.: Spikes in two-component systems of nonlinear Schrodinger equations with trapping potentials. J. Differ. Equ. 229, 538–569 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case I, II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145, 223–283 (1984)Google Scholar
  20. 20.
    Pistoia, A., Ramos, M.: Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions. J. Differ. Equ. 201, 160–176 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rabinowitz, P.H.: On a class of nonlinear Schrdinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ramos, M., Soares, S.H.M.: On the concentration of solutions of singularly perturbed Hamiltonian systems in \(R^N\). Port. Math. (N.S.) 63, 157–171 (2006)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ramos, M., Tavares, H.: Solutions with multiple spike patterns for an elliptic system. Calc. Var. 31, 1–25 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ramos, M., Yang, J.: Spike-layered solutions for an elliptic system with Neumann boundary conditions. Trans. Am. Math. Soc. 357, 3265–3284 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ruf, B.: Superlinear Elliptic Equations and Systems, Handbook of differential equations: stationary partial differential equations, vol. V, Handb. Differ. Equ. Elsevier, North-Holland, pp. 211–276 (2008)Google Scholar
  26. 26.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7, 447–526 (1982)CrossRefzbMATHGoogle Scholar
  27. 27.
    Sirakov, B., Soares, S.H.M.: Soliton solutions to systems of coupled Schroinger equations of Hamiltonian type. Trans. Am. Math. Soc. 362, 5729–5744 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Willem, M.: Minimax Theorems. Birkhäuser, Berlin (1996)CrossRefzbMATHGoogle Scholar
  30. 30.
    Zhang, R., Chen, J., Zhao, F.: Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete Contin. Dyn. Syst. 30, 1249–1262 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Mathematics, AMSS, CASBeijingPeople’s Republic of China
  2. 2.Department of MathematicsNational Changhua University of EducationChanghuaTaiwan
  3. 3.Department of MathematicsYunnan Normal UniversityKunmingPeople’s Republic of China

Personalised recommendations