# Semiclassical limits of ground state solutions to Schrödinger systems

• Yanheng Ding
• Cheng Lee
• Fukun Zhao
Article

## Abstract

This paper is concerned with the existence and concentration properties of the ground state solutions to the following coupled Schrödinger systems
\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2\varDelta u+u+V(x)v=W(x)G_{v}(z)~\hbox { in }\ {\mathbb {R}}^N,\\ -\varepsilon ^2\varDelta v+v+V(x)u=W(x)G_{u}(z)~\hbox {in } \ {\mathbb {R}}^N,\\ u(x)\rightarrow 0\ \hbox {and }v(x)\rightarrow 0\ \hbox {as } \ |x|\rightarrow \infty , \end{array} \right. \end{aligned}
and
\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2\varDelta u+u+V(x)v=W(x)(G_{v}(z)+|z|^{2^*-2}v)~\hbox {in } \ {\mathbb {R}}^N,\\ -\varepsilon ^2\varDelta v+v+V(x)u=W(x)(G_{u}(z)+|z|^{2^*-2}u)~\hbox {in } \ {\mathbb {R}}^N,\\ u(x)\rightarrow 0\ \hbox {and }v(x)\rightarrow 0\ \hbox {as } \ |x|\rightarrow \infty , \end{array} \right. \end{aligned}
where $$z=(u,v)\in {\mathbb {R}}^2$$, $$G$$ is a power type nonlinearity, having superquadratic growth at both $$0$$ and infinity but subcritical, $$V$$ can be sign-changing and $$\inf W>0$$. We prove the existence, exponential decay, $$H^2$$-convergence and concentration phenomena of the ground state solutions for small $$\varepsilon >0$$.

35J50 58E05

## Notes

### Acknowledgments

The authors would express their thanks to unknown referee for his/her careful reading and suggestions which improve the work. This work was completed during a visit by Y. Ding and F. Zhao to the Department of Mathematics of NCUE in Taiwan. They would like to thank NCUE for its hospitality and support. Also, the first author was supported by NSFC(11331010 and 10421001), China. The second author was supported by NSC(101-2115-M018-001). The corresponding author was supported by NSFC (11061040 and 11361078), Key Project of Chinese Ministry of Education (No212162) and NSFY of Yunnan Province (2011CI020), China.

## References

1. 1.
Ackermann, N.: A superposition principle and multibump solutions of periodic Schrödinger equations. J. Funct. Anal. 234(2), 277–320 (2006)
2. 2.
Alves, C.O., Carriao, P.C., Miyagaki, O.H.: On the existence of positive solutions of a perturbed Hamiltonian system in $${\mathbb{R}}^N$$. J. Math. Anal. Appl. 276, 673–690 (2002)Google Scholar
3. 3.
Alves, C.O., Soares, S.H.M.: Singularly perturbed elliptic systems. Nonlinear Anal. 64, 109–129 (2006)
4. 4.
Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrodinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)
5. 5.
Ávila, A.I., Yang, J.: On the existence and shape of least energy solutions for some elliptic systems. J. Differ. Equ. 191, 348–376 (2003)
6. 6.
Benci, V., Rabinowitz, P.H.: Critical point theorems for indefinite functionals. Invent. Math. 52, 241–273 (1979)
7. 7.
Bonheure, D., dos Santos, E.M., Ramos, M.: Ground state and non-grounbd state solutions of some strongly coupled elliptic systems. Trans. Am. Math. Soc. 364, 477–491 (2012)
8. 8.
Clément, P.H., de Fegueiredo, D.G., Mitedieri, E.: Positive solutions of semilinear elliptic systems. Commun. Partial Differ. Equ. 17, 923–940 (1992)Google Scholar
9. 9.
de Figueiredo, D.G.: Semilinear elliptic systems: existence, multiplicity, symmetry of solutions. Handbook of differential equations: stationary partial differential equations, vol. V, 1C48, Handb. Differ. Equ., Elsevier, North-Holland (2008)Google Scholar
10. 10.
de Figueiredo, D.G., Felmer, P.L.: On superquadratic elliptic systems. Trans. Am. Math. Soc. 343, 97–116 (1994)
11. 11.
de Figueiredo, D.G., Yang, J.: Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal. 33, 211–234 (1998)
12. 12.
Ding, Y.: Variational methods for strongly indefinite problems. Inerdisciplinary Math. Sci., vol. 7. World Scientific Publ., Singapore (2007)Google Scholar
13. 13.
Ding, Y., Lin, F.H.: Semiclassical states of Hamiltonian systems of Schrödinger equations with subcritical and critical nonlinearies. J. Partial Differ. Equ. 19, 232–255 (2006)
14. 14.
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)
15. 15.
Hulshof, J., Van der Vorst, R.C.A.M.: Differential systems with strongly variational structure. J. Funct. Anal. 114, 32–58 (1993)
16. 16.
Kryszewski, W., Szulkin, A.: Generalized linking theorem with an application to semilinear Schrödinger equations. Adv. Differ. Equ. 3, 441–472 (1998)
17. 17.
Li, G., Yang, J.: Asymptotically linear elliptic systems. Commun. Partial Differ. Equ. 29, 925–954 (2004)
18. 18.
Lin, T.C., Wei, J.: Spikes in two-component systems of nonlinear Schrodinger equations with trapping potentials. J. Differ. Equ. 229, 538–569 (2006)
19. 19.
Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case I, II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145, 223–283 (1984)Google Scholar
20. 20.
Pistoia, A., Ramos, M.: Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions. J. Differ. Equ. 201, 160–176 (2004)
21. 21.
Rabinowitz, P.H.: On a class of nonlinear Schrdinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)
22. 22.
Ramos, M., Soares, S.H.M.: On the concentration of solutions of singularly perturbed Hamiltonian systems in $$R^N$$. Port. Math. (N.S.) 63, 157–171 (2006)
23. 23.
Ramos, M., Tavares, H.: Solutions with multiple spike patterns for an elliptic system. Calc. Var. 31, 1–25 (2008)
24. 24.
Ramos, M., Yang, J.: Spike-layered solutions for an elliptic system with Neumann boundary conditions. Trans. Am. Math. Soc. 357, 3265–3284 (2005)
25. 25.
Ruf, B.: Superlinear Elliptic Equations and Systems, Handbook of differential equations: stationary partial differential equations, vol. V, Handb. Differ. Equ. Elsevier, North-Holland, pp. 211–276 (2008)Google Scholar
26. 26.
Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7, 447–526 (1982)
27. 27.
Sirakov, B., Soares, S.H.M.: Soliton solutions to systems of coupled Schroinger equations of Hamiltonian type. Trans. Am. Math. Soc. 362, 5729–5744 (2010)
28. 28.
Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)
29. 29.
Willem, M.: Minimax Theorems. Birkhäuser, Berlin (1996)
30. 30.
Zhang, R., Chen, J., Zhao, F.: Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete Contin. Dyn. Syst. 30, 1249–1262 (2011)