On semi-classical limits of ground states of a nonlinear Maxwell–Dirac system

  • Yanheng Ding
  • Tian Xu


We study the semi-classical ground states of the nonlinear Maxwell–Dirac system:
$$\begin{aligned} \left\{ \begin{array}{l} \alpha \cdot \left( i\hbar \nabla + q(x)\mathbf{A }(x)\right) w-a\beta w -\omega w - q(x)\phi (x) w = P(x)g(\left| w\right| ) w\\ -\Delta \phi =q(x)\left| w\right| ^2\\ -\Delta {A_k}=q(x)(\alpha _k w)\cdot \bar{w}\ \ \ \ k=1,2,3 \end{array} \right. \end{aligned}$$
for \(x\in \mathbb{R }^3\), where \(\mathbf{A }\) is the magnetic field, \(\phi \) is the electron field and \(q\) describes the changing pointwise charge distribution. We develop a variational method to establish the existence of least energy solutions for \(\hbar \) small. We also describe the concentration behavior of the solutions as \(\hbar \rightarrow 0\).

Mathematics Subject Classification (2000)

35Q40 49J35 



Special thanks to the reviewer for his/her good comments and suggestions. The comments were all valuable and helpful for revising and improving our paper, as well as to the important guiding significance of our research. The work was supported by the National Science Foundation of China (NSFC11331010, 10721061, 11171286).


  1. 1.
    Abenda, S.: Solitary waves for Maxwell–Dirac and Coulomb–Dirac models. Ann. Inst. Henri. Poincaré 68(2), 229–244 (1998)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ackermann, N.: A nonlinear superposition principle and multibump solution of periodic Schrödinger equations. J. Funct. Anal. 234, 423–443 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ambrosetti, A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger–Poisson equation. Commun. Contemp. Math. 10, 1–14 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)Google Scholar
  6. 6.
    Bartsch, T., Ding, Y.H.: Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachr. 279, 1267–1288 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Chadam, J.: Global solutions of the Cauchy problem for the (classical) coupled Maxwell–Dirac system in one space dimension. J. Funct. Anal. 13, 173–184 (1973)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Chadam, J., Glassey, R.: On the Maxwell–Dirac equations with zero magnetic field and their solutions in two space dimension. J. Math. Anal. Appl. 53, 495–507 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ding, Y.H.: Variational Methods for Strongly Indefinite Problems, Interdiscip. Math. Sci., vol. 7. World Scientific Publ., Singapore (2007)Google Scholar
  10. 10.
    Ding, Y.H.: Semi-classical ground states concentrating on the nonlinear potemtical for a Dirac equation. J. Differ. Equ. 249, 1015–1034 (2010)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ding, Y.H., Liu, X.: Semi-classical limits of ground states of a nonlinear Dirac equation. J. Differ. Equ. 252, 4962–4987 (2012)Google Scholar
  12. 12.
    Ding, Y.H., Ruf, B.: Existence and concentration of semi-classical solutions for Dirac equations with critical nonlinearities. SIAM J. Math. Anal. 44(6), 3755–3785 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ding, Y.H., Wei, J.C.: Stationary states of nonlinear Dirac equations with general potentials. Rev. Math. Phys. 20, 1007–1032 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Esteban, M.J., Séré, E.: Stationary states of the nonlinear Dirac equation: a variational appriach. Commun. Math. Phys. 171, 323–350 (1995)Google Scholar
  15. 15.
    Esteban, M.J., Georgiev, V., Séré, E.: Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations. Calc. Var. Partial Differ. Equ. 4(3), 265–281 (1996)Google Scholar
  16. 16.
    Finkelstein, R., LeLevier, R., Ruderman, M.: Nonlinear spinor fields. Phys. Rev. 83(2), 326–332 (1951)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Finkelstein, R., Fronsdal, C., Kaus, P.: Nonlinear spinor field. Phys. Rev. 103(5), 1571–1579 (1956)zbMATHCrossRefGoogle Scholar
  18. 18.
    Flato, M., Simon, J., Taffin, E.: On the global solutions of the Maxwell–Dirac equations. Commun. Math. Phys. 113, 21–49 (1987)CrossRefGoogle Scholar
  19. 19.
    Glassey, R.T., Chadam, J.M.: Properties of the solutions of the Cauchy problem for the classical coupled Maxwell–Dirac equations in one space dimension. Proc. Am. Math. Soc. 43(2), 373–378 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Georgiev, V.: Small amplitude solutions of Maxwell–Dirac equations. Indiana Nuiv. Math. J. 40(3), 845–883 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)Google Scholar
  22. 22.
    Grandy Jr, W.T.: Relativistic quantum mechanics of leptons and fields, volume 41 of Fundamental Theories of Physics. Kluwer Academic Publishers Group, Dordrecht (1991)CrossRefGoogle Scholar
  23. 23.
    Gross, L.: The Cauchy problem for the coupled Maxwell–Dirac equations. Commun. Pure Appl. Math. 19, 1–5 (1996)CrossRefGoogle Scholar
  24. 24.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations: the locally compact case, Part II, AIP Anal. non linéaire 1, 223–283 (1984)Google Scholar
  25. 25.
    Lisi, A.G.: A solitary wave solution of the Maxwell–Dirac equations. J. Phys. A Math. Gen. 28, 5385–5392 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Ivanenko, D.D.: Notes to the theory of interaction via particles. Zh.Éksp. Teor. Fiz. 8, 260–266 (1938)Google Scholar
  27. 27.
    Pankov, A.: Periodic nonlinear Schrödinger equations with applications to photonic crystals. Milan J. Math. 3, 259–287 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Psarelli, M.: Maxwell–Dirac equations in four-dimensional Minkowski space. Commun. Partial Differ. Equ. 30, 97–119 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Schwabl, F.: Advanced Quantum Mechanics. Springer, Berlin (1999)Google Scholar
  30. 30.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7, 447–526 (1982)zbMATHCrossRefGoogle Scholar
  31. 31.
    Sparber, C., Markowich, P.: Semiclassical asymptotics for the Maxwell–Dirac system. J. Math. Phys. 44(10), 4555–4572 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Szulkin, A., Weth, T.: Gound state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Thaller, B.: The Dirac Equation. Texts and Monographs in Physics. Springer, Berlin (1992)Google Scholar
  34. 34.
    Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Mathematics, AMSSChinese Academy of SciencesBeijingChina

Personalised recommendations