On perturbation of a functional with the mountain pass geometry

Applications to the nonlinear Schrödinger–Poisson equations and the nonlinear Klein–Gordon–Maxwell equations
  • Wonjeong Jeong
  • Jinmyoung SeokEmail author


Consider a functional \(I_0\) with the mountain-pass geometry and a critical point \(u_0\) of mountain-pass type. In this paper, we discuss about the existence of critical points \(u_\varepsilon \) around \(u_0\) for functionals \(I_\varepsilon \) perturbed from \(I_0\) in a suitable sense. As applications, we show the existence of a solution to the nonlinear Schrödinger–Poisson equations and the nonlinear Klein–Gordon–Maxwell equations with quite general class of nonlinearity.

Mathematics Subject Classification (2000)

35A15 35B38 35J50 



The authors would like to express sincere gratitude to their advisor Prof. Byeon for his direction and encouragement. The first author was supported by Basic Science Research Program (No. 2011-0030749) and Mid-career Researcher Program (No. 2010-0014135) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST). The second author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-0000941).


  1. 1.
    Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)Google Scholar
  2. 2.
    Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations. Topol. Methods Nonlinear Anal. 35, 33–42 (2010)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. 27, 779–791 (2010)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Azzollini, A., d’Avenia, P., Pomponio, A.: Multiple critical points for a class of nonlinear functionals. Ann. Mat. Pura Appl. 190, 507–523 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Azzollini, A., Pisani, L., Pomponio, A.: Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system. Proc. R. Soc. Edinburgh Sect. A 141, 449–463 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Benci, V., Fortunato, D.: Solitary waves in abelian gauge theories. Adv. Nonlinear Stud. 8, 327–352 (2008)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations, I, existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185, 185–200 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)zbMATHMathSciNetGoogle Scholar
  14. 14.
    D’Aprile, T., Mugnai, D.: Solitary Waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134, 1–14 (2004)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hirata, J., Ikoma, N., Tanaka, K.: Nonlinear scalar field equations in \({\mathbb{R}}^N\) : mountain pass and symmetric mountain pass approaches. Topol. Methods Nolinear Anal. 35, 253–276 (2010)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Jeanjean, L., Tanaka, K.: A remark on least energy solutions in \(\mathbb{R}^N\). Proc. Am. Math. Soc. 131, 2399–2408 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Jeanjean, L., Toland, J.: Bounded Palais-Smale mountain-pass sequences. C. R. Acad. Sci. Paris Sér. I Math 327, 23–28 (1998).Google Scholar
  18. 18.
    Kikuchi, H.: On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations. Nonlinear Anal. 67, 1445–1456 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kwong, M.: Uniqueness of positive solutions of \(\Delta u -u +u^p\) in \({\mathbb{R}}^n\). Arch. Ration. Mech. Anal. 3, 243–266 (1989)Google Scholar
  20. 20.
    Lieb, E. H. : Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Studies in, Appl. Math. 57, 93–105 (1976/77).Google Scholar
  21. 21.
    Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 6, 1063–1072 (1980)CrossRefGoogle Scholar
  22. 22.
    Long, E.: Existence and stability of solitary waves in nonlinear Klein-Gordon-Maxwell equations. Rev. Math. Phys. 18, 747–779 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Long, E., Stuart, D.: Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law. Rev. Math. Phys. 21, 459–510 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Mugnai, D.: Solitary waves in abelian gauge theories with strongly nonlinear potentials. Ann. I. H. Poincaré Anal. Non Linéaire 27, 1055–1071 (2010).Google Scholar
  25. 25.
    Mugnai, D.: The Schrödinger-Poisson system with positive potential. Commun. Partial Differ. Equ. 36, 1099–1117 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Ruiz, D.: The Schödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)Google Scholar
  27. 27.
    Struwe, M.: The existence of surfaces of constant mean curvature with free boundaries. Acta. Math. 160, 19–64 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Stuwe, M.: Variational Methods: Application to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer (1990).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MathematicsPOSTECHPohangRepublic of Korea
  2. 2.Department of Mathematical ScienceSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations