The improved decay rate for the heat semigroup with local magnetic field in the plane

  • David Krejčiřík


We consider the heat equation in the presence of compactly supported magnetic field in the plane. We show that the magnetic field leads to an improvement of the decay rate of the heat semigroup by a polynomial factor with power proportional to the distance of the total magnetic flux to the discrete set of flux quanta. The proof employs Hardy-type inequalities due to Laptev and Weidl for the two-dimensional magnetic Schrödinger operator and the method of self-similar variables and weighted Sobolev spaces for the heat equation. A careful analysis of the asymptotic behaviour of the heat equation in the similarity variables shows that the magnetic field asymptotically degenerates to an Aharonov–Bohm magnetic field with the same total magnetic flux, which leads asymptotically to the gain on the polynomial decay rate in the original physical variables. Since no assumptions about the symmetry of the magnetic field are made in the present work, it gives a normwise variant of the recent pointwise results of Kovařík (Calc Var doi: 10.1007/s00526-011-0437-4) about large-time asymptotics of the heat kernel of magnetic Schrödinger operators with radially symmetric field in a more general setting.

Mathematics Subject Classification

35K05 35P05 35P20 47A30 81Q10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M.S., Stegun, I.A. (eds): Handbook of Mathematical Functions. Dover, New York (1965)Google Scholar
  2. 2.
    Andrews G.E., Askey R., Roy R.: Special functions, Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  3. 3.
    Balinsky A., Laptev A., Sobolev A.: Generalized Hardy inequality for the magnetic Dirichlet forms. J. Stat. Phys. 116, 507–521 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Brézis, H.: Analyse fonctionnelle: Théorie et applications. Dunod (2002)Google Scholar
  5. 5.
    Cabré X., Martel Y.: Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier. C. R. Acad. Sci. Paris 329, 973–978 (1999)zbMATHCrossRefGoogle Scholar
  6. 6.
    D’Ancona P., Fanelli L.: Strichartz and smoothing estimates for dispersive equations with magnetic potentials. Commun. Partial. Differ. Equ. 33, 1082–1112 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    D’Ancona P., Fanelli L., Vega L., Visciglia N.: Endpoint Strichartz estimates for the magnetic Schrödinger equation. J. Funct. Anal. 258, 3227–3240 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Duro G., Zuazua E.: Large time behavior for convection-diffusion equations in \({\mathbb{R}^N}\) with asymptotically constant diffusion. Commun. Partial. Differ. Equ. 24, 1283–1340 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ekholm T., Kovařík H.: Stability of the magnetic Schrödinger operator in a waveguide. Commun. Partial. Differ. Equ. 30, 539–565 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Escobedo M., Kavian O.: Variational problems related to self-similar solutions of the heat equation. Nonlinear Anal. Theor. 11, 1103–1133 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Escobedo M., Zuazua E.: Large time behavior for convection-diffusion equations in R N. J. Funct. Anal. 100, 119–161 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Evans W.D., Lewis R.T.: On the Rellich inequality with magnetic potentials. Math. Z. 251, 267–284 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fournais, S., Helffer, B.: Diamagnetism, Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and Their Applications, vol. 77, pp. 19–30. Birkhäuser, Boston (2009)Google Scholar
  14. 14.
    Frass M., Krejčiřík D., Pinchover Y.: On some strong ratio limit theorems for heat kernels. Discr. Contin. Dynam. Syst. A 28, 495–509 (2010)CrossRefGoogle Scholar
  15. 15.
    Griffiths D.J.: Introduction to Quantum Mechanics. Prentice Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  16. 16.
    Hansson A.M.: On the spectrum and eigenfunctions of the Schrödinger operator with Aharonov–Bohm magnetic field. Internat J. Math. Math. Sci. 23, 3751–3766 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kato T.: Schrödinger operators with singular potentials. Israel J. Math. Math. 13, 135–148 (1972)CrossRefGoogle Scholar
  18. 18.
    Kovařík, H.: Heat kernels of two dimensional magnetic Schrödinger and Pauli operators. Calc. Var. doi: 10.1007/s00526-011-0437-4
  19. 19.
    Krejčiřík D., Zuazua E.: The Hardy inequality and the heat equation in twisted tubes. J. Math. Pures Appl. 94, 277–303 (2010)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Krejčiřík D., Zuazua E.: The asymptotic behaviour of the heat equation in a twisted Dirichlet-Neumann waveguide. J. Differ. Equ. 250, 2334–2346 (2011)zbMATHCrossRefGoogle Scholar
  21. 21.
    Laptev A., Weidl T.: Hardy inequalities for magnetic Dirichlet forms. Oper. Theory Adv. Appl. 108, 299–305 (1999)MathSciNetGoogle Scholar
  22. 22.
    Pankrashkin K., Richard S.: Spectral and scattering theory for the Aharonov–Bohm operators. Rev. Math. Phys. 23, 53–81 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Reed M., Simon B.: Methods of Modern Mathematical Physics, IV. Analysis of Operators. Academic Press, New York (1978)zbMATHGoogle Scholar
  24. 24.
    Vázquez J.L., Zuazua E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173, 103–153 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Weidl T.: A remark on Hardy type inequalities for critical Schrödinger operators with magnetic fields. Oper. Theory Adv. Appl. 110, 345–352 (1999)MathSciNetGoogle Scholar
  26. 26.
    Weidmann J.: Continuity of the eigenvalues of self-adjoint operators with respect to the strong operator topology. Integr. Equ. Oper. Theory 3(1), 138–142 (1980)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations