On the long-time behavior of some mathematical models for nematic liquid crystals

  • Hana Petzeltová
  • Elisabetta RoccaEmail author
  • Giulio Schimperna


A model describing the evolution of a liquid crystal substance in the nematic phase is investigated in terms of two basic state variables: the velocity field u and the director field d, representing the preferred orientation of molecules in a neighborhood of any point in a reference domain. After recalling a known existence result, we investigate the long-time behavior of weak solutions. In particular, we show that any solution trajectory admits a non-empty ω-limit set containing only stationary solutions. Moreover, we give a number of sufficient conditions in order that the ω-limit set contains a single point. Our approach improves and generalizes existing results on the same problem.

Mathematics Subject Classification (2000)

35B40 35K45 76A15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blesgen T.: A generalization of the Navier-Stokes equations to two-phase flow. J. Phys. D Appl. Phys. 32, 1119–1123 (1999)CrossRefGoogle Scholar
  2. 2.
    Cavaterra, C., Rocca, E.: On a 3D isothermal model for nematic liquid crystals accounting for stretching terms, preprint arXiv:1107.3947v1, 1–14 (2011)Google Scholar
  3. 3.
    Climent-Ezquerra , B. , Guillén-Gonzáles F., Rodríguez-Bellido M.A.: Stability for nematic liquid crystals with stretching terms. Int. J. Bifurcation Chaos 20, 2937–2942 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chill R.: On the Łjasiewicz-Simon gradient inequality. J. Funct Anal 201, 572–601 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chandrasekhar S.: Liquid Crystals. Cambridge U. Press, Cambridge (1977)Google Scholar
  6. 6.
    de Gennes P.G.: The Physics of Liquid Crystals. Oxford Univ. Press, London (1974)Google Scholar
  7. 7.
    Ericksen J.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113, 97–120 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Feireisl E., Rocca E., Schimperna G.: On a non-isothermal model for nematic liquid crystals. Nonlinearity 24, 243–257 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Feireisl, E., Frémond, M., Rocca, E., Schimperna, G.: A new approach to non-isothermal models for nematic liquid crystals, preprint arXiv:1104.1339v1, 1–21 (2011)Google Scholar
  10. 10.
    Feireisl E., Simondon F.: Convergence for semilinear degenerate parabolic equations in several space dimensions. J. Dynam. Differ. Equ. 12, 647–673 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gajewski H., Griepentrog J.A.: A descent method for the free energy of multicomponent systems. Discrete Contin. Dyn. Syst. 15, 505–528 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Grasselli M., Wu H.: Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow. Z. Angew. Math. Phys. 62, 979–992 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Leslie F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lin F.-H., Liu C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure Appl. Math. 48, 501–537 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lin F.-H., Liu C.: Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154, 135–156 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. (French), Dunod, Gauthier-Villars, Paris (1969)Google Scholar
  17. 17.
    Liu C., Shen J.: On liquid crystal flows with free-slip boundary conditions. Discrete Contin. Dynam. Syst. 7, 307–318 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Simon J.: Compact sets in the space L p(0, T ; B). Ann. Mat. Pura Appl. 146(4), 65–96 (1987)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Sun H., Liu C.: On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete Contin. Dyn. Syst. 23, 455–475 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wu, H., Xu, X., Liu, C.: Asymptotic behavior for a nematic liquid crystal model with different Kkinematic transport properties, preprint arXiv:0901.1751v2, 1–26 (2010)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hana Petzeltová
    • 1
  • Elisabetta Rocca
    • 2
    Email author
  • Giulio Schimperna
    • 3
  1. 1.Institute of Mathematics of the Czech Academy of SciencesPraha 1Czech Republic
  2. 2.Dipartimento di MatematicaUniversità di MilanoMilanoItaly
  3. 3.Dipartimento di MatematicaUniversità di PaviaPaviaItaly

Personalised recommendations