Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties

Article

Abstract

We study the asymptotic behavior of global classical solutions to hydrodynamical systems modeling the nematic liquid crystal flows under kinematic transports for molecules of different shapes. The coupling system consists of Navier–Stokes equations and kinematic transport equations for the molecular orientations. We prove the convergence of global solutions to single steady states as time tends to infinity as well as estimates on the convergence rate both in 2D for arbitrary regular initial data and in 3D for certain particular cases.

Mathematics Subject Classification (2000)

35B40 35B41 35Q35 76D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cavaterra, C., Rocca, E.: On a 3D isothermal model for nematic liquid crystals accounting for stretching terms. Preprint arXiv:1107.3947v1, 1–14 (2011)Google Scholar
  2. 2.
    Coutand D., Shkoller S.: Well-posedness of the full Ericksen–Leslie model of nematic liquid crystals. C. R. Acad. Sci. Paris Ser. I Math. 333(10), 919–924 (2001)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    de Gennes P.G., Prost J.: The Physics of Liquid Crystals. Oxford Science Publications, Oxford (1993)Google Scholar
  4. 4.
    Ericksen J.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 22–34 (1961)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ericksen J.: Continuum theory of nematic liquid crystals. Res. Mech. 21, 381–392 (1987)MathSciNetGoogle Scholar
  6. 6.
    Ericksen J.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113, 97–120 (1991)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Feireisl E., Takáč P.: Long-time stabilization of solutions to the Ginzburg–Landau equations of superconductivity. Monatsh. Math. 133, 197–221 (2001)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Grasselli, M., Wu, H.: Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow. ZAMP (2011). doi: 10.1007/s00033-011-0157-9
  9. 9.
    Gurtin M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)MATHGoogle Scholar
  10. 10.
    Haraux A., Jendoubi M.A.: Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity. Asymptot. Anal. 26, 21–36 (2001)MathSciNetMATHGoogle Scholar
  11. 11.
    Hardt R., Kinderlehrer D.: Mathematical Questions of Liquid Crystal Theory. The IMA Volumes in Mathematics and its Applications, vol. 5. Springer, New York (1987)Google Scholar
  12. 12.
    Huang, S.-Z.: Gradient Inequalities, with Applications to Asymptotic Behavior and Stability of Gradient-Like Systems. Mathematical Surveys and Monographs no. 126. AMS (2006)Google Scholar
  13. 13.
    Hyon Y., Kwak D.-Y., Liu C.: Energetic variational approach in complex fluids: Maximum dissipation principle. Discret. Contin. Dyn. Syst. 26(4), 1291–1304 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Jeffery G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. 102, 102–161 (1922)Google Scholar
  15. 15.
    Jendoubi M.A.: A simple unified approach to some convergence theorem of L. Simon. J. Funct. Anal 153, 187–202 (1998)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kaniel S., Shinbrot M.: Smoothness of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal 24, 302–324 (1967)MathSciNetMATHGoogle Scholar
  17. 17.
    Larson R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, Oxford (1995)Google Scholar
  18. 19.
    Leslie F.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Leslie, F: Theory of flow phenomenum in liquid crystals. In: Brown, G. (ed.) Advances in Liquid Crystals, vol. 4, pp. 1–83. Academic Press, New York (1979)Google Scholar
  20. 20.
    Lin F.-H., Du Q.: Ginzburg–Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28, 1265–1293 (1997)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Lin F.-H., Liu C.: Nonparabolic dissipative system modeling the flow of liquid crystals. Commun. Pure Appl. Math. XLVIII, 501–537 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lin F.-H., Liu C.: Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discret. Contin. Dyn. Syst. 2, 1–23 (1996)MathSciNetMATHGoogle Scholar
  23. 23.
    Lin F.-H., Liu C.: Existence of solutions for the Ericksen–Leslie system. Arch. Ration. Mech. Anal. 154(2), 135–156 (2000)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Liu C., Walkington N.J.: An Eulerian description of fluids containing visco-hyperelastic particles. Arch. Ration. Mech. Anal. 159, 229–252 (2001)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Lin P., Liu C., Zhang H.: An energy law preserving C 0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227(2), 1411–1427 (2007)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Liu C., Shen J., Yang X.: Dynamics of defect motion in nematic liquid crystal flow: modeling and numerical simulation. Commun. Comput. Phys. 2, 1184–1198 (2007)MATHGoogle Scholar
  27. 27.
    Ł ojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels, Colloque Internationaux du C.N.R.S., 117, Les équations aux dérivées partielles, pp. 87–89 (1963)Google Scholar
  28. 28.
    Ł ojasiewicz, S.: Ensembles semi-analytiques. I.H.E.S., Bures-sur-Yvette (1965)Google Scholar
  29. 29.
    Rybka P., Hoffmann K.-H.: Convergence of solutions to Cahn–Hilliard equation. Commun. Part. Differ. Equ. 24, 1055–1077 (1999)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Serrin J.: On the interior of weak solutions of Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Simon L.: Asymptotics for a class of nonlinear evolution equation with applications to geometric problems. Ann. Math. 118, 525–571 (1983)MATHCrossRefGoogle Scholar
  32. 32.
    Sun H., Liu C.: On energetic variational approaches in modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 23(1&2), 455–475 (2009)MATHGoogle Scholar
  33. 33.
    Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1983)Google Scholar
  34. 34.
    Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. AMS (2001)Google Scholar
  35. 35.
    Wu H.: Convergence to equilibrium for a Cahn–Hilliard model with the Wentzell boundary condition. Asymptot. Anal. 54, 71–92 (2007)MathSciNetMATHGoogle Scholar
  36. 36.
    Wu H.: Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 26(1), 379–396 (2010)MATHCrossRefGoogle Scholar
  37. 37.
    Wu H., Grasselli M., Zheng S.: Convergence to equilibrium for a parabolic-hyperbolic phase-field system with Neumann boundary conditions. Math. Model. Methods Appl. Sci. 17, 1–29 (2007)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zheng S.: Nonlinear Evolution Equations. Pitman Series Monographs and Survey in Pure and Applied Mathematics 133. Chapman & Hall/CRC, Boca Raton (2004)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied MathematicsFudan UniversityShanghaiChina
  2. 2.Department of MathematicsPenn State UniversityState CollegeUSA

Personalised recommendations