Surface diffusion flow near spheres

Article

Abstract

We consider closed immersed hypersurfaces evolving by surface diffusion flow, and perform an analysis based on local and global integral estimates. First we show that a properly immersed stationary (ΔH ≡ 0) hypersurface in \({\mathbb{R}^3}\) or \({\mathbb{R}^4}\) with restricted growth of the curvature at infinity and small total tracefree curvature must be an embedded union of umbilic hypersurfaces. Then we prove for surfaces that if the L2 norm of the tracefree curvature is globally initially small it is monotonic nonincreasing along the flow. We also derive pointwise estimates for all derivatives of the curvature assuming that its L2 norm is locally small. Using these results we show that if a singularity develops the curvature must concentrate in a definite manner, and prove that a blowup under suitable conditions converges to a nonumbilic embedded stationary surface. We obtain our main result as a consequence: the surface diffusion flow of a surface initially close to a sphere in L2 is a family of embeddings, exists for all time, and exponentially converges to a round sphere.

Mathematics Subject Classification (2000)

53C44 58J35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baras P., Duchon J., Robert R.: Evolution D’une Interface par diffusion de surface. Commun. Partial Differ. Equ. 9(4), 313–335 (1984)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Blatt S.: Loss of convexity and embeddedness for geometric evolution equations of higher order. J. Evol. Equ. 10(1), 21–27 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cahn J., Taylor J.: Surface motion by surface diffusion. Acta Metall. Mater. 42(4), 1045–1063 (1994)CrossRefGoogle Scholar
  4. 4.
    Cahn J., Elliott C., Novick-Cohen A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Commun. Math. Phys. 7(3), 287–301 (1996)MathSciNetMATHGoogle Scholar
  5. 5.
    Chruściel P.: Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation. Commun. Math. Phys. 137(2), 289–313 (1991)MATHCrossRefGoogle Scholar
  6. 6.
    Davì F., Gurtin M.: On the motion of a phase interface by surface diffusion. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 41(6), 782–811 (1990)MATHCrossRefGoogle Scholar
  7. 7.
    Elliott C., Garcke H.: Existence results for diffusive surface motion laws. Adv. Math. Sci. Appl. 7(1), 465–488 (1997)MathSciNetGoogle Scholar
  8. 8.
    Escher J., Mayer U.F., Simonett G.: The surface diffusion flow for immersed hypersurfaces. SIAM J. Math. Anal. 29(6), 1419–1433 (1998)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Fife P.: Models for phase separation and their mathematics. Electron. J. Differ. Equ. 2000(48), 1–26 (2000)MathSciNetGoogle Scholar
  10. 10.
    Hamilton R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)MathSciNetMATHGoogle Scholar
  11. 11.
    Huisken G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom 20(1), 237–266 (1984)MathSciNetMATHGoogle Scholar
  12. 12.
    Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), pp. 45–84. Springer, Berlin (1999)Google Scholar
  13. 13.
    Ito K.: The surface diffusion flow equation does not preserve the convexity. RIMS Kokyuroku 1105, 10–21 (1999)MATHGoogle Scholar
  14. 14.
    Kuwert E., Schatzle R.: The Willmore flow with small initial energy. J. Differ. Geom. 57(3), 409–441 (2001)MathSciNetMATHGoogle Scholar
  15. 15.
    Kuwert E., Schatzle R.: Gradient flow for the Willmore functional. Commun. Anal. Geom. 10(2), 307–339 (2002)MathSciNetMATHGoogle Scholar
  16. 16.
    Li P., Yau S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69, 269–291 (1982)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Mantegazza C.: Smooth geometric evolutions of hypersurfaces. Geom. Funct. Anal. 12(1), 138–182 (2002)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Mayer U.: Numerical solutions for the surface diffusion flow in three space dimensions. Comput. Appl. Math. 20(3), 361–379 (2001)MathSciNetMATHGoogle Scholar
  19. 19.
    McCoy, J., Wheeler, G., Williams, G.: Lifespan theorem for constrained surface diffusion flows. to appear in Math. Z. (2010). doi:10.1007/s00209-010-0720-7
  20. 20.
    Michael J., Simon L.: Sobolev and mean-value inequalities on generalized submanifolds of \({\mathbb{R}^n}\). Commun. Pure Appl. Math. 26(36), 1–379 (1973)MathSciNetGoogle Scholar
  21. 21.
    Mullins W.: Theory of thermal grooving J. Appl. Phys. 28, 333–339 (1957)Google Scholar
  22. 22.
    Polden, A.: Curves and surfaces of total curvature and fourth order flows. Ph.D. thesis, Thesis, Mathematisches Institut, Uni. Tubingen (1996)Google Scholar
  23. 23.
    Simon L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–326 (1993)MATHGoogle Scholar
  24. 24.
    Simonett G.: The Willmore flow for near spheres. Differ. Integral Equ. 14(8), 1005–1014 (2001)MathSciNetMATHGoogle Scholar
  25. 25.
    Wheeler, G.: Fourth order geometric evolution equations. Ph.D. thesis, University of Wollongong (2010)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Mathematics and Applied StatisticsUniversity of WollongongWollongongAustralia

Personalised recommendations