Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape

Article

Abstract

We investigate ground state configurations of atomic systems in two dimensions interacting via short range pair potentials. As the number of particles tends to infinity, we show that low-energy configurations converge to a macroscopic cluster of finite surface area and constant density, the latter being given by the density of atoms per unit volume in the triangular lattice. In the special case of the Heitmann–Radin sticky disc potential and exact ground states, we show that the macroscopic cluster has a (unique) Wulff shape. This is done by showing that the atomistic energy of crystalline configurations, after subtracting off a bulk part and re-scaling, Gamma-converges to a macroscopic anisotropic surface energy.

Mathematics Subject Classification (2000)

70C20 49-XX 82B24 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alicandro R., Braides A., Cicalese M.: Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1, 85–107 (2006)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)MATHGoogle Scholar
  3. 3.
    Braides A.: Approximation of Free-Discontinuity Problems. Springer-Verlag, Berlin (1998)MATHGoogle Scholar
  4. 4.
    Capet, S., Friesecke, G.: Minimum energy configurations of classical charges: Large N asymptotics, Appl. Math. Res. Express. (2009). doi: 10.1093/amrx/abp002
  5. 5.
    Conway J.H., Sloane N.J.H.: Sphere Lackings, Lattices and Groups. 3rd edn. Springer-Verlag, Berlin (1999)Google Scholar
  6. 6.
    Dobrushin R., Kotecký R., Shlosman S.: Wulff Construction, A Global Shape From Local Interactions. AMS, Providence, RI (1992)Google Scholar
  7. 7.
    E, W., Li, D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286, 1099–1140 (2009)Google Scholar
  8. 8.
    Fonseca I., Müller S.: A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119, 125–136 (1991)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Harborth H.: Lösung zu Problem 664 a. Elem. Math. 29, 14–15 (1974)MathSciNetGoogle Scholar
  10. 10.
    Heitmann R.C., Radin C.: The ground state for sticky disks. J. Stat. Phys. 22, 281–287 (1980)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Herring C.: Some theorems on the free energies of crystal surfaces. Phys. Rev 82(1), 87–93 (1951)MATHCrossRefGoogle Scholar
  12. 12.
    Radin C.: The ground state for soft disks. J. Stat. Phys. 26, 365–373 (1981)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Taylor, J.E.: Unique structure of solutions to a class of nonelliptic variational problems. In: Differential Geometry (Proc. Sympos. Pure. Math., Vol. XXVII), Part 1, pp. 419–427. AMS, Providence, R.I. (1975)Google Scholar
  14. 14.
    Theil F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262, 209–236 (2006)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Tóth F.: Über einen geometrischen Satz. Math. Z. 46, 79–83 (1940)Google Scholar
  16. 16.
    Wulff G.: Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen. Zeitschrift der Kristallographie 34, 449–530 (1901)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenMünchenGermany
  2. 2.Institut für MathematikUniversität AugsburgAugsburgGermany

Personalised recommendations