Almost-Schur lemma



Schur’s lemma states that every Einstein manifold of dimension n ≥ 3 has constant scalar curvature. In this short note we ask to what extent the scalar curvature is constant if the traceless Ricci tensor is assumed to be small rather than identically zero. In particular, we provide an optimal L2 estimate under suitable assumptions and show that these assumptions cannot be removed.

Mathematics Subject Classification (2000)

53C21 53C24 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZurichSwitzerland
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations