Almost-Schur lemma

  • Camillo De LellisEmail author
  • Peter M. Topping


Schur’s lemma states that every Einstein manifold of dimension n ≥ 3 has constant scalar curvature. In this short note we ask to what extent the scalar curvature is constant if the traceless Ricci tensor is assumed to be small rather than identically zero. In particular, we provide an optimal L 2 estimate under suitable assumptions and show that these assumptions cannot be removed.

Mathematics Subject Classification (2000)

53C21 53C24 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Lellis C., Müller S.: Optimal rigidity estimates for nearly umbilical surfaces. J. Differ. Geom. 69, 75–110 (2005)zbMATHGoogle Scholar
  2. 2.
    Ge, Y., Wang, G.: An almost Schur theorem on 4-dimensional manifolds. Preprint 2010Google Scholar
  3. 3.
    Gribkov I.V.: A multidimensional problem on the correctness of Schur’s theorem. Mat. Sb. (N.S.) 120(162), 426–440 (1983)MathSciNetGoogle Scholar
  4. 4.
    Nikolaev I.G.: Stability problems in a theorem of F.Schur. Comment. Math. Helv. 70, 210–234 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Perez, D.: PhD thesis, Universität Zürich. In preparationGoogle Scholar
  6. 6.
    Thurston, W.P.: Hyperbolic structures on 3-manifolds II: surface groups and 3-manifolds which fibre over the circle. arXiv:math.GT/9801045Google Scholar
  7. 7.
    Topping, P.M.: Lectures on the Ricci flow. L.M.S. Lecture note series, vol. 325, C.U.P. (2006).

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZurichSwitzerland
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations