The time-dependent von Kármán plate equation as a limit of 3d nonlinear elasticity

  • Helmut Abels
  • Maria Giovanna MoraEmail author
  • Stefan Müller


The asymptotic behaviour of solutions of three-dimensional nonlinear elastodynamics in a thin plate is studied, as the thickness h of the plate tends to zero. Under appropriate scalings of the applied force and of the initial values in terms of h, it is shown that three-dimensional solutions of the nonlinear elastodynamic equation converge to solutions of the time-dependent von Kármán plate equation.

Mathematics Subject Classification (2000)

74K20 74B20 74H10 35L70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abels, H., Mora, M.G., Müller, S.: Large time existence for thin vibrating plates. Preprint (2009)Google Scholar
  2. 2.
    Antman S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2005)Google Scholar
  3. 3.
    Ball J.M.: Some Open Problems in Elasticity. Geometry, Mechanics, and Dynamics, pp. 3–59. Springer, New York (2002)Google Scholar
  4. 4.
    Ciarlet P.G.: Mathematical Elasticity II—Theory of Plates. North-Holland Publishing Co., Amsterdam (1997)Google Scholar
  5. 5.
    Dal Maso G.: An Introduction to Γ-Convergence. Birkhäuser, Boston (1993)Google Scholar
  6. 6.
    Friesecke G., James R.D., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55, 1461–1506 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Friesecke G., James R.D., Müller S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180, 183–236 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Ge Z., Kruse H.P., Marsden J.E.: The limits of Hamiltonian structures in three-dimensional elasticity, shells and rods. J. Nonlinear Sci. 6, 19–57 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Lecumberry M., Müller S.: Stability of slender bodies under compression and validity of the von Kármán theory. Arch. Ration. Mech. Anal. 193, 255–310 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    LeDret H., Raoult A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 73, 549–578 (1995)MathSciNetGoogle Scholar
  11. 11.
    Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover Publications, New York (1944)Google Scholar
  12. 12.
    Mielke A.: Saint-Venant’s problem and semi-inverse solutions in nonlinear elasticity. Arch. Ration. Mech. Anal. 102, 205–229 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Monneau R.: Justification of the nonlinear Kirchhoff-Love theory of plates as the application of a new singular inverse method. Arch. Ration. Mech. Anal. 169, 1–34 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Mora, M.G., Scardia, L.: Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density. Preprint SISSA, Trieste (2009)Google Scholar
  15. 15.
    Müller S., Pakzad M.R.: Convergence of equilibria of thin elastic plates—the von Kármán case. Commun. Partial Differ. Equ. 33, 1018–1032 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Raoult A.: Construction d’un modèle d’évolution de plaques avec terme d’inertie de rotation. Ann. Mat. Pura Appl. 139, 361–400 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Simon J.: Compact sets in the space L p(0, T; B). Ann. Mat. Pura Appl. 146, 65–96 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Tambača J.: Justification of the dynamic model of curved rods. Asymptot. Anal. 31, 43–68 (2002)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Vodák R.: A general asymptotic dynamic model for Lipschitzian elastic curved rods. J. Appl. Math. 2005, 425–451 (2005)CrossRefzbMATHGoogle Scholar
  20. 20.
    Xiao L.-M.: Asymptotic analysis of dynamic problems for linearly elastic shells—justification of equations for dynamic membrane shells. Asymptot. Anal. 17, 121–134 (1998)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Helmut Abels
    • 1
  • Maria Giovanna Mora
    • 2
    Email author
  • Stefan Müller
    • 3
  1. 1.NWF I—MathematikUniversität RegensburgRegensburgGermany
  2. 2.Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly
  3. 3.Hausdorff Center for MathematicsUniversität BonnBonnGermany

Personalised recommendations