Advertisement

Uniform estimates and limiting arguments for nonlocal minimal surfaces

  • Luis Caffarelli
  • Enrico ValdinociEmail author
Article

Abstract

We consider nonlocal minimal surfaces obtained by a fractional type energy functional, parameterized by \({s\in(0,1)}\). We show that the s-energy approaches the perimeter as s → 1. We also provide density properties and clean ball conditions, which are uniform as s → 1, and optimal lower bounds obtained by a rearrangement result. Then, we show that s-minimal sets approach sets of minimal perimeter as s → 1.

Mathematics Subject Classification (2000)

28A75 49Q05 49Q15 53A10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosio, L., De Philippis, G., Martinazzi, L.: Gamma-convergence of nonlocal perimeter functionals (preprint)Google Scholar
  2. 2.
    Brascamp H.J., Lieb E.H., Luttinger J.M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17, 227–237 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Non-local minimal surfaces. Commun. Pure Appl. Math. (to appear)Google Scholar
  4. 4.
    Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80, xii+240 pp. Birkhäuser Verlag, Basel (1984)Google Scholar
  5. 5.
    Massari, U., Miranda, M.: Minimal Surfaces of Codimension One. North-Holland Mathematics Studies, vol. 91, xiii + 243 pp. North-Holland Publishing Co., Amsterdam (1984)Google Scholar
  6. 6.
    Savin, O., Valdinoci, E.: Γ-convergence for nonlocal phase transitions (preprint)Google Scholar
  7. 7.
    Wheeden, R.L., Zygmund, A.: Measure and Integral. An Introduction to Real Analysis. Pure and Applied Mathematics, vol. 43, x + 274 pp. Marcel Dekker, Inc., New York (1977)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Texas at AustinAustinUSA
  2. 2.Dipartimento di MatematicaUniversità di Roma Tor VergataRomeItaly

Personalised recommendations